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ACADEMIE   EUROPEENNE   INTERDISCIPLINAIRE   DES   SCIENCES 
INTERDISCIPLINARY EUROPEAN ACADEMY OF SCIENCES 

5 rue Descartes 75005 PARIS 
 

Séance du Lundi  8 janvier 2018/Institut Henri Poincaré à 15h45 
 
La séance est ouverte à 15h45 sous la Présidence de Victor MASTRANGELO et en la 

présence de nos Collègues Gilbert BELAUBRE, Jean-Louis BOBIN, Gilles COHEN-TANNOUDJI, 
Françoise DUTHEIL ,  Claude ELBAZ, Jean -Pierre FRANÇOISE, Michel GONDRAN, Irène 
HERPE-LITWIN, Gérard LEVY, Claude MAURY,  Marie-Françoise PASSINI, Jacques PRINTZ,  
Jean SCHMETS , Jean-Pierre TREUIL, Alain STAHL,. Jean-Paul TEYSSANDIER . 

 
Etaient présents en tant que visiteurs Jean BERBINAU administrateur du lycée Saint Louis et du 

Collège Stanislas, Marie-Joséphe MARTIN ancienne professeur  de Mathématiques en classes 
préparatoires.. 

 
Etaient excusés :François BEGON, Jean-Pierre BESSIS, Jean-Louis BOBIN, Bruno BLONDEL, 

Michel CABANAC, Alain CARDON, Juan-Carlos CHACHQUES,  Alain CORDIER , Daniel 
COURGEAU, Sylvie DERENNE, Ernesto DI MAURO, Jean-Felix DURASTANTI, Claude ELBAZ, 
Vincent FLEURY, Robert FRANCK, Dominique LAMBERT, Valérie LEFEVRE-SEGUIN, Antoine 
LONG, Pierre MARCHAIS, Anastassios METAXAS, Jean-Jacques NIO, Alberto OLIVIERO,    Edith 
PERRIER, Pierre PESQUIES, Michel SPIRO, Mohand TAZEROUT , Jean VERDETTI. 

 
 

I. . Présentation de notre conférencière Marie AMALRIC par Victor 
MASTRANGELO : 

 
Marie AMALRIC, née en 1989,  nous a été recommandée par le Pr Stanislas DEHAENE lors de son 
intervention du 11 septembre 2017. Elle  est Post -doctorante en Sciences Cognitives à l'Université de 
ROCHESTER dans l'Etat de new York aux USA dans le département "Cerveau et Sciences cognitives" .  
Elle a travaillé notamment en partenariat avec le Pr Stanislas DEHAENE(INSERM-CEA / Collège de 
France) sur l'Etude par (fMRI ) de l'acquisition de concepts mathématiques de haut niveau chez les étudiants  
 Un langage cérébral pour les formes géométriques.  
 
 
ETUDES: 
 
2013-
2017 

 
 Université Pierre et Marie Curie (UPMC)  

 
Doctorat en  Neurosciences Cognitive, sous la direction de Stanislas Dehaene.  
“Etude des mécanismes cérébraux impliqués dans l'apprentissage et le traitement  des concepts 
mathématiques de haut niveau"  

 

2009-
2013 

 École Normale Supérieure (ENS Paris, Ulm)  
 

2010-
2013 

 

 École Nationale Supérieure des Techniques Avancées (ENSTA Paris-tech), Master Ingénierie 
Mathématique 
Specialité: Optimisation, recherche opérationnelle et commande 

.  
  

2010-
2012 

École Normale Supérieure: Masters Sciences cognitives 
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 Sujets Master:  
-2010: Origines des idées mathematiques. (Dir. Giuseppe Longo, CREA).  
-2011: 'Modélisation Bayésienne des comportements des rats dans un labyrinthe ’ (Dir. J. 
Droulez LPPA, Collège de France).  
-2012:  Intuition et traitement cortical des concepts mathématiques de haut niveau. (Dir. 
Stanislas Dehaene, UNICOG).  

 

2009-
2010 

 Université Pierre et Marie Curie (UPMC), Paris 6,  
Licence de  Mathematiques  
Principal: Algebra  
secondaire: Sciences  Cognitive àl'ENS  
Stage : Modelisation  des explosions de neurones. (Dir. Sophie Denève, LNC, ENS)  

 

2007-
2009 

 Classe Préparatoire aux Grandes Ecoles “Grandes Écoles”  en Mathematiques  and 
Physique  au Lycée Louis le Grand (Paris ) 

 

 
CARRIERE DE RECHERCHE 
2017-… : University of Rochester, Department of Brain and Cognitive Sciences, CAOs lab, Post-doc 
position.  
2016-2017: Collège de France, ATER.  
2013-2016: UPMC, INSERM-CEA Unité de  Neuro-imagerie Cognitive, recherche doctorale 
 
PRINCIPALES PUBLICATIONS: 
Amalric, M. & Dehaene, S. Origins of the brain networks for advanced mathematics in expert mathematicians. 
PNAS, 04/2016; 113(18). DOI:10.1073/pnas.1603205113  
Amalric, M., Wang, L., Pica, P., Figueira, S., Sigman, M., Dehaene, S. The language of geometry: Fast 
comprehension of geometrical primitives and rules in human adults and preschoolers. PLOS Computational Biology, 
01/2017. DOI:10.1371/journal.pcbi.1005273  
Amalric, M., Denghien, I., Dehaene, S. On the role of visual experience in mathematical development: Evidence from 
blind mathematicians. Developmental Cognitive Neuroscience, 10/2017. DOI:10.1016/j.dcn.2017.09.007  
Amalric, M., Dehaene, S. Cortical Circuits for Mathematical Knowledge: Evidence for a Major Subdivision within 
the Brain Semantic Networks. Phil Trans Royal Society B, 12/2017. DOI:10.1098/rstb.2016.0515  
 
COMMUNICATIONS DANS DES SEMINAIRES OU DEPARTEMENTS DE RECHERCHE 
 
Mai 2017: Université du Luxembourg, invitée  par Christine Schiltz.  
Janvier 2017: Université de Gand , invitée  par Wim Fias.  
Novembre 2016: MIT, Cambridge, invitée par Josh Tenenbaum.  
Octobre 2016: University du Wisconsin, Madison, invitée par Edward Hubbard.  
Octobre 2016: University de Pennsylvanie, Philadelphie, invitée par Elizabeth Brannon.  
Novembre 2015: LPP, Paris, invitée par Véronique Izard.  
Mars  2015: PICNIC Lab, ICM, Paris, invitée  par Imen el Karoui. e the lab FELLOWSHIPS AND AWW 

BOURSES et RECOMPENSES  

2013: Récompense du meilleur stage final, des anciens de  l'ENSTA-ParisTech  pour le projet de recherche “ Etude 
des processus cérébraux d'apprentissage des concepts mathématiques abstraits "  

2013: Bourse doctorale,  du “DIM-Cerveau et pensée” (Région Ile-de-France).  

2016: Bourse de voyage de l'ISC pour participer  à une université d'été sur le raisonnement  à l' UQAM, Montréal.  

2017: Bourse post-doctorale, de la fondation Fyssen, pour le projet: “Acquisition de Concepts Mathématiques dans 
le  Cerveau Humain ”.  
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II. Conférence de Marie AMALRIC 
 

Résumé de la conférence avec références bibliographiques: 
 

Comment le cerveau humain manipule-t-il les concepts mathématiques ? 
 

Comment le cerveau humain parvient-il à conceptualiser des idées abstraites ? Quelle est en particulier 
l’origine de l’activité mathématique lorsqu’elle est associée à un haut niveau d’abstraction ? Cette question 
qui intéresse depuis longtemps philosophes, mathématiciens et enseignants, commence aujourd’hui à être 
abordée par les neurosciences cognitives, et ce, en grande partie par le biais d’études portant sur 
l’arithmétique élémentaire. Toutefois, les mathématiques recouvrent de nombreuses disciplines telles que 
l’algèbre, l’analyse ou la géométrie et ne sauraient être réduites à la compréhension des nombres. Aussi mon 
travail privilégie l’étude de la manipulation d’idées mathématiques plus avancées en cherchant à identifier 
les corrélats neuronaux de la réflexion mathématique de haut niveau.  

 

Dans son exposé, elle présentera les résultats de trois expériences en IRMf   (Imagerie par Résonance 
Magnétique fonctionnelle) , menées chez des mathématiciens professionnels (dont trois mathématiciens non-
voyants) qui devaient évaluer la valeur de vérité d’affirmations mathématiques et non-mathématiques 
énoncées oralement. Même formulées comme des phrases, toutes les affirmations mathématiques, quels que 
soient leur difficulté ,  leur domaine, ou l'expérience visuelle du participant, impliquent systématiquement des 
régions cérébrales totalement dissociées des aires reliées au langage et au traitement sémantique,  mais qui 
coïncident avec des zones activées par l’arithmétique élémentaire. A l’inverse, même lorsqu’elles 
comprennent des opérateurs logiques (quantificateurs, négation), les affirmations non-mathématiques 
(portant sur l’histoire, les arts, la géologie, la faune etc…), activent aires cérébrales classiquement associées 
au langage. L’activité mathématique semble donc « recycler » des aires cérébrales impliquées dans la 
connaissance élémentaire des nombres et de l’espace et se dissocier de la manipulation sémantique du 
langage. 
 
References: 
Amalric, M. &amp; Dehaene, S. Origins of the brain networks for advanced mathematics in expert 
mathematicians. PNAS, 04/2016; 113(18). DOI:10.1073/pnas.1603205113 
Amalric, M., Denghien, I., Dehaene, S. On the role of visual experience in mathematical development: 
Evidence from blind mathematicians. Developmental Cognitive Neuroscience, 10/2017. 
DOI:10.1016/j.dcn.2017.09.007 
 
 
Un compte-rendu détaillé sera prochainement disponible sur le site de l'AEIS , http://www.science-inter.com 
 
 
 

 

  

http://www.science-inter.com/
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Annonces 

 
I.       Le prochain colloque de l'AEIS sur "Les Signatures de la Conscience" se 

tiendra les jeudi 15 mars et vendredi 16 mars 2018 à l'Institut Henri Poincaré dans 
l'Amphi Hermite . Pour vous inscrire il vous suffit d'aller sur le site : 

 
https://aeis-2018.sciencesconf.org 

 
II. Notre Collègue Alain STAHL vient de publier auprès de la Librairie Philosophique VRIN la 

3ème édition de son  ouvrage "Science et Philosophie" 
 
Cet ouvrage de 337 pages est consacré à une réflexion sue les conséquences épistémologiques et 
philosophiques des avancées spectaculaires dans tous les domaines scientifiques. Il renvoie à d’importants  
développements donnés en libre accès sur le site de l’auteur http://perso.wanadood.fr/alain.stahl    
 
Les apports nouveaux, dans cette troisième édition, concernent : 
  
1 - des acquis récents qui étayent ses réflexions de « critique  scientifique » sur des points d’actualité, tels 
que le calcul informatique, les transitions de phase, la cosmologie, le repliement des protéines, l’intelligence 
artificielle, les méthodes de mesure... 
2 - Un dernier chapitre, entièrement nouveau, où – par une méthode originale, récapitulant les conclusions 
des chapitres scientifiques – l’auteur  tente de répondre à la question posée par le  nouveau sous-titre de 
l’ouvrage.  : “La science permet-elle une présentation moderne des grandes questions philosophiques?” 
L’écriture est rigoureuse, mais la lecture est aisée. 
 
Les grands thèmes philosophiques sont toujours,  –chose rare -, étayés par la priorité donnée aux acquis 
scientifiques. C’est une mise à niveau dont la lecture induit un dialogue permanent, très ouvert et très riche,  
avec l’auteur. 
 
 
 

III. Quelques ouvrages papiers relatifs au colloque de 2014 " Systèmes stellaires et planétaires- 
Conditions d'apparition de la Vie"   - 

− Prix de l'ouvrage :25€ .  
− Pour toute commande s'adresser à : 
 

Irène HERPE-LITWIN Secrétaire générale AEIS 
39 rue Michel Ange 75016 PARIS 

06 07 73 69 75 
irene.herpe@science-inter.com 

 
IV. L'ouvrage cité ci-dessus est accessible gratuitement sur le site: 

 
http://www.edp-open.org/images/stories/books/fulldl/Formation-des-systemes-stellaires-et-planetaires.pdf 
 

 
 

https://aeis-2018.sciencesconf.org/
http://perso.wanadood.fr/alain.stahl
mailto:irene.herpe@science-inter.com
http://www.edp-open.org/images/stories/books/fulldl/Formation-des-systemes-stellaires-et-planetaires.pdf
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Documents 
 

 
 

Pour  compléter l'intervention  de Marie AMALRIC qui a cité les travaux du mathématicien 
Grothendieck, notre collègue Jacques PRINTZ nous a confié une petite fiche relative à ce grand 
mathématicien:  
 

p. 08 : Fiche Grothendieck écrite par notre Collègue Jacques PRINTZ 
 

 Pour préparer l'intervention de notre conférencier Emmanuel DUPOUX sur les relations entre 
linguistique et Intelligence Artificielle nous vous proposons : 
 

p.09 :  issu du site https://arxiv.org/abs/1607.08723v3 un article d'Emmanuel DUPOUX de 2016 intitulé :"  
Cognitive Science in the era of Artificial Intelligence: A roadmap for reverse-engineering the infant 
language-learner." 
 
 
P. 34 : issu du site http://www.lscp.net/persons/dupoux/papers/Linzen_DG_2017_Assessing%20syntax-
sensitive%20dependencies%20in%20LSTMs.TACL.pdf un article de 2017 de  Linzen, T., Dupoux, E. & 
Goldberg, Y. (2016). "Assessing the ability of LSTMs to learn syntax-sensitive dependencies. 
Transactions of the Association for Computational Linguistics, 4, 521-535".  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

https://arxiv.org/abs/1607.08723v3
http://www.lscp.net/persons/dupoux/papers/Linzen_DG_2017_Assessing%20syntax-sensitive%20dependencies%20in%20LSTMs.TACL.pdf
http://www.lscp.net/persons/dupoux/papers/Linzen_DG_2017_Assessing%20syntax-sensitive%20dependencies%20in%20LSTMs.TACL.pdf
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Fiche Grothendieck par notre Collègue Jacques PRINTZ 
 
Dans l'autobiographie d’Alexandre Grothendieck, décédé en 2014, et refondateur de la Géométrie algébrique 
moderne1, page 48 de Récoltes et semailles [N’est disponible que sur Internet, téléchargeable sans problème, 
sauf que ça fait plus de 1.000 pages ; https://www.quarante-deux.org/archives/klein/prefaces/Romans_1965-
1969/Recoltes_et_semailles.pdf], il y a un petit texte tout à fait illustratif de sa démarche architecturale, en 
rapport avec ce que nous a expliqué Marie Amalric, dans sa conférence du 8/01/2018 : 
 
« La structure d’une chose n’est nullement une chose que nous puissions "inventer". Nous pouvons 
seulement la mettre à jour patiemment, humblement en faire connaissance, la "découvrir". S’il y a 
inventivité dans ce travail, et s’il nous arrive de faire oeuvre de forgeron ou d’infatigable bâtisseur, ce n’est 
nullement pour "façonner", ou pour "bâtir", des "structures". Celles-ci ne nous ont nullement attendues pour 
être, et pour être exactement ce qu’elles sont ! Mais c’est pour exprimer, le plus fidèlement que nous le 
pouvons, ces choses que nous sommes en train de découvrir et de sonder, et cette structure réticente à se 
livrer, que nous essayons à tâtons, et par un langage encore balbutiant peut-être, à cerner. Ainsi sommes-
nous amenés à constamment "inventer" le langage apte à exprimer de plus en plus finement la structure 
intime de la chose mathématique, et à "construire" à l’aide de ce langage, au fur et à mesure et de toutes 
pièces, les "théories" qui sont censées rendre compte de ce qui a été appréhendé et vu. Il y a là un 
mouvement de va-et-vient continuel, ininterrompu, entre l’appréhension des choses, et l’expression de ce qui 
est appréhendé, par un langage qui s’affine et se re-crée au fil du travail, sous la constante pression du 
besoin immédiat ». 
 
Cette approche « linguistique », de type grammaire, n’est pas la première du genre, von Neumann a tenu des 
propos similaires dans son dernier livre The computer and the brain, écrit quelques mois avant sa mort, en 
1957 ; et également chez Turing dans son article de 1936, en réponse aux problématiques introduites par 
Hilbert et Russel/Whitehead avec le langage des Principia mathematica. En informatique, ce genre de 
démarche est fondamentale, je l’avais brièvement abordée dans la présentation de mes travaux lors de notre 
séance du 9 mai 2017, où l’on peut représenter l’architecture des systèmes par une cascade de langages 
emboîtés les uns dans les autres, ceux utilisés par les programmeurs n’ayant qu’un très lointain rapport avec 
ceux utilisés pour piloter les machines de gravure pour « sculpter » les cristaux de silicium qui in fine sont 
les transducteurs énergétiques qui réalisent concrètement ce que le programmeur a prescrit. 
 
Plus près de nous, il y a également le livre du mathématicien Jean-Marie Souriau, Grammaire de la nature, 
spécialiste des systèmes dynamiques, également très intéressant : 
[http://www.jmsouriau.com/Publications/Grammaire%20de%20la%20Nature/JMSouriau-
GrammaireDeLaNature8juillet2007-complet.pdf]. 
 
Pour conclure, l’approche présentée par M. Almaric, intéressante, me paraît un peu réductionniste, car si on 
essaye de comprendre ce qui se passe dans un ordinateur en scrutant les transistors et le silicium, on est sûr 
de ne rien comprendre, en tout cas pas ce que font les programmeurs ... 
 
 
 

 
 

                                                 
1 Le tome 1 du cours de Jean Dieudonné, Cours de géométrie algébrique, est une excellente introduction historique, des origines 
grecques jusqu’à Grothendieck. 

https://www.quarante-deux.org/archives/klein/prefaces/Romans_1965-1969/Recoltes_et_semailles.pdf%5d
https://www.quarante-deux.org/archives/klein/prefaces/Romans_1965-1969/Recoltes_et_semailles.pdf%5d
http://www.jmsouriau.com/Publications/Grammaire%20de%20la%20Nature/JMSouriau-GrammaireDeLaNature8juillet2007-complet.pdf
http://www.jmsouriau.com/Publications/Grammaire%20de%20la%20Nature/JMSouriau-GrammaireDeLaNature8juillet2007-complet.pdf


Cognitive Science in the era of Artificial Intelligence:
A roadmap for reverse-engineering the infant language-learner

Emmanuel Dupoux
EHESS, ENS, PSL Research University, LSCP, CNRS

emmanuel.dupoux@gmail.com, www.syntheticlearner.net

Abstract

During their first years of life, infants learn the lan-
guage(s) of their environment at an amazing speed despite
large cross cultural variations in amount and complexity of
the available language input. Understanding this simple fact
still escapes current cognitive and linguistic theories. Re-
cently, spectacular progress in the engineering science, no-
tably, machine learning and wearable technology, offer the
promise of revolutionizing the study of cognitive develop-
ment. Machine learning offers powerful statistical learn-
ing algorithms that can achieve human-like performance on
many linguistic tasks. Wearable sensors can capture vast
amounts of data, which enable the reconstruction of the sen-
sory experience of infants in their natural environment. The
project of ’reverse engineering’ language development, i.e.,
of building an effective system that mimics infant’s achieve-
ments appears therefore to be within reach.

Here, we analyze the conditions under which such a
project can contribute to our scientific understanding of early
language development. We argue that instead of defining a
sub-problem or simplifying the data, computational models
should address the full complexity of the learning situation,
and take as input as faithful reconstructions of the sensory
signals available to infants as possible. This implies that ac-
cessible but privacy-preserving repositories of home data be
setup and widely shared, and models be evaluated at different
linguistic levels through a benchmark of psycholinguist tests
that can be passed by machines and humans alike, linguisti-
cally and psychologically plausible learning mechanisms be
merged with probabilistic/optimization principles from ma-
chine learning to yield scalable learning architectures. We
discuss the feasibility of this approach and present prelimi-
nary results.

Keywords

Artificial intelligence, psycholinguistics, computational
modeling, corpus analysis, early language acquisition, in-
fant development, language bootstrapping, machine learning,
phonetic learning

1 Introduction

In recent years, Artificial Intelligence (AI) has been hit-
ting the headlines with impressive achievements at matching
or even beating humans in complex cognitive tasks (playing
go or video games: Mnih et al., 2015; Silver et al., 2016; pro-
cessing speech and natural language: Amodei et al., 2015a;
Ferrucci, 2012; recognizing objects and faces: He, Zhang,
Ren, & Sun, 2015; Lu & Tang, 2014) and promising a rev-
olution in manufacturing processes and human society at
large. These successes show that with statistical learning
techniques, powerful computers and large amounts of data,
it is possible to mimic important components of human cog-
nition. What does it tell us about the underlying psychologi-
cal and/or neural processes that are used by humans to solve
these tasks? Can AI also revolutionize the study of human
cognition by providing us with scientific insights about these
processes? Here, we argue that developmental psychology
and in particular, the study of language acquisition is one
area where, indeed, AI and machine learning advances can
be transformational, provided that the involved fields make
significant adjustments in their practices in order to adopt
what we call the reverse engineering approach. Specifically:

The reverse engineering approach to the study
of infant language acquisition consists in con-
structing computational systems that can, when
fed with the same input data, reproduce lan-
guage acquisition as it is observed in infants.

The idea of using machine learning or AI techniques as a
means to study child’s language learning is actually not new
(to name a few: Kelley, 1967; Anderson, 1975; Berwick,
1985; Rumelhart & McClelland, 1987; Langley & Carbonell,
1987) although relatively few studies have concentrated on
the early phases of language learning (see Brent, 1996b, for
a review). What is new, however, is that whereas previous
AI approaches were limited to proofs of principle on toy or
miniature languages, modern AI techniques have scaled up
so much that end-to-end language processing systems work-
ing with real inputs are now deployed commercially. This pa-
per examines whether and how such unprecedented change
in scale could be put to use to address lingering scientific
questions in the field of language development. The structure
of the paper is as follows: In Section 2, we present two deep
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2 E. DUPOUX

scientific puzzles that large scale modeling approaches could
in principle address: solving the bootstrapping problem, ac-
counting for developmental trajectories. In Section 3, we re-
view past theoretical or modeling work, showing that these
puzzles have not, so far, received an adequate answer. In Sec-
tion 4, we argue that to answer them with reverse engineer-
ing, four requirements have to be addressed: (1) modeling
should be done on real data, (2) model performance should
be compared with that of humans, (3) modeling should be
computationally effective, and (4) datasets, benchmarks and
models should be open sourced. In Section 5, we argue
that within a simplifying framework, these requirements can
be reached given current technology, although specific road-
blocks need to be lifted. In Section 6 we show that even
before these roadblocks are lifted, interesting results can be
obtained. In Section 7 we show how the reverse engineering
approach can be generalized beyond the simplifying frame-
work presented in Section 5, and we conclude in Section 8.

2 Two scientific puzzles of early language development

Language development is a theoretically important sub-
field within the study of human cognitive development for
the following reasons: First, the linguistic system is uniquely
complex: mastering a language implies mastering a combi-
natorial sound system (phonetics and phonology), an open
ended morphologically structured lexicon, and a composi-
tional syntax and semantics (e.g., Jackendoff, 1997). No
other animal communication system uses such a complex
multilayered organization. On this basis, it has been claimed
that humans have evolved (or acquired through a mutation)
an innately specified computational architecture to process
language (see Chomsky, 1965; Hauser, Chomsky, & Fitch,
2002; Steedman, 2014). Second, the overt manifestations of
this system are extremely variable across languages and cul-
tures. Language can be expressed through the oral or man-
ual modality. In the oral modality, some languages use only
3 vowels, other more than 20. Consonants inventories vary
from 6 to more than 100. Words can be mostly composed
of a single syllable (as in Chinese) or long strings of stems
and affixes (as in Turkish). Semantic roles can be identified
through fixed positions within constituents, or be identified
through functional morphemes, etc. (see Song, 2010, for a
typology of language variation). Evidently, infants acquire
the relevant variant through learning, not genetic transmis-
sion. Third, the human language capacity can be viewed as
a finite computational system with the ability to generate a
(virtual) infinity of utterances. This turns into a learnability
problem for infants: on the basis of finite evidence, they have
to induce the (virtual) infinity corresponding to their lan-
guage. As has been discussed since Aristotle, such induction
problems do not have a generally valid solution. Therefore,
language is simultaneously a human-specific biological trait,
a highly variable cultural production, and an apparently in-

tractable learning problem. Despite these complexities, most
infants spontaneously learn their native(s) language(s) in a
matter of a few years of immersion in a linguistic environ-
ment. The more we know about this simple fact, the more
puzzling it appears. Specifically, we outline two central sci-
entific puzzles that a reverse engineering approach could, in
principle help to solve: solving the bootstrapping problem
and accounting for developmental trajectories. The first puz-
zle relates to the ultimate outcome of language learning: the
so-called stable state, i.e., the language competence in the
idealized adult. The second puzzle relates to what we know
of the intermediate steps in the acquisition process, and their
variations as a function of language input.1

2.1 Solving the bootstrapping problem

The stable state can be described as the operational knowl-
edge (which we will refer to here broadly as a ’grammar’)
which enables adults to process a virtual infinity of utter-
ances in their native language. This grammar is a multi-
layered system comprising several components: phonetics,
phonology, morphology, syntax, semantics, pragmatics. The
bootstrapping problem arises from the fact these different
components appear interdependent from a learning point of
view. For instance, the phoneme inventory of a language
is defined through pairs of words that differ minimally in
sounds (e.g., "light" vs "right"). This would suggest that to
learn phonemes, infants need to first learn words. However,
from a processing viewpoint, words are recognized through
their phonological constituents (e.g., Cutler, 2012), suggest-
ing that infants should learn phonemes before words. Sim-
ilar paradoxical co-dependency issues have been noted be-
tween other linguistic levels (for instance, syntax and se-
mantics: Pinker, 1987, prosody and syntax: Morgan & De-
muth, 1996). In other words, order to learn any one com-
ponent of the language competence, many others need to
be learned first, creating apparent circularities. The boot-
strapping problem is further compounded by the fact that in-
fants do not have to be taught formal linguistics or language
courses to learn their native language(s). As in other cases
of animal communication, infants spontaneously acquire the
language(s) of their community by merely being immersed
in that community (Pinker, 1994). Experimental and ob-
servational studies have revealed that infants start acquiring
elements of their language (phonetics, phonology, lexicon,
syntax and semantics) even before they can talk (Jusczyk,
1997; Hollich et al., 2000; Werker & Curtin, 2005), and
therefore before parents can give them much feedback about

1The two puzzles are not independent as they are two facets of
the same phenomenon. In practice, proposals for solving the boot-
strapping problem may offer insights about the observed trajecto-
ries. Vice-versa, data on developmental trajectories may provide
more manageable subgoals for the difficult task of solving the boot-
strapping problem.
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their progress into language learning. This suggests that lan-
guage learning (at least the initial bootstrapping steps) occurs
largely without supervisory feedback.2 A reverse engineering
approach has the potential of solving this puzzle by provid-
ing a system that can demonstrably bootstrap into language
when fed with similar, supervisory poor, inputs.

2.2 Accounting for developmental trajectories

In the last forty years, a large body of empirical work
has been collected regarding infant’s language achievements
during their first years of life. This work has only added
more puzzlement. First, given the multi-layered structure
of language, one could expect a stage-like developmental
tableau where acquisition would proceed as a discrete suc-
cession of learning phases organized logically or hierarchi-
cally (e.g., building linguistic structure from the low level
to the high levels). This is not what is observed (see Fig-
ure 1). For instance, infants start differentiating native from
foreign consonants and vowels at 6 months, but continue to
fine tune their phonetic categories well after the first year
of life (e.g., Sundara, Polka, & Genesee, 2006). However,
they start learning about the sequential structure of phonemes
(phonotactics, see Jusczyk, Friederici, Wessels, Svenkerud,
& Jusczyk, 1993) way before they are done acquiring the
phoneme inventory (Werker & Tees, 1984). Even before that,
they start acquiring the meaning of a small set of common
words (e.g. Bergelson & Swingley, 2012). In other words,
instead of a stage-like developmental tableau, the evidence
shows that acquisition takes places at all levels more or less
simultaneously, in a gradual and largely overlapping fash-
ion. Second, observational studies have revealed consider-
able variations in the amount of language input to infants
across cultures (Shneidman & Goldin-Meadow, 2012) and
across socio-economic strata (Hart & Risley, 1995), some of
which can exceed an order of magnitude (Weisleder & Fer-
nald, 2013, p. 2146). These variations do impact language
achievement as measured by vocabulary size and syntactic
complexity (Hoff, 2003; Huttenlocher, Waterfall, Vasilyeva,
Vevea, & Hedges, 2010; Pan, Rowe, Singer, & Snow, 2005;
Rowe & Goldin-Meadow, 2009, among others), but at least
for some markers of language achievement, the differences in
outcome are much less extreme than the variations in input.
For canonical babbling, for instance, an order of magnitude
would mean that some children start to babble at 6 months,
and others at 5 years! The observed range is between 6 and
10 months, less than a 1 to 2 ratio. Similarly, reduced range
of variations are found for the onset of word production and
the onset of word combinations. This suggests a surprising
level of resilience to language learning, i.e., some minimal
amount of input is sufficient to trigger certain landmarks. A
reverse engineering approach has the potential of account-
ing for this otherwise perplexing developmental tableau, and
provide quantitative predictions both across linguistic levels

(gradual overlapping pattern), and cultural or individual vari-
ations in input (resilience).

2.3 Why it matters

Solving these two puzzles would have a large impact on
the study of language learning and more broadly on devel-
opmental psychology. At the theoretical level, it would en-
able give closure to long-lasting controversies (nature versus
nurture, semantic versus syntactic bootstrapping) and replace
them with quantitative evaluations of the relative contribu-
tion of each types of factors. In other words, it would trans-
form a field which is predominantly descriptive and some
would say speculative, into a field where formal models yield
quantitative predictions. It would also give rise to practical
applications in the fields of developmental disorders and lan-
guage education by enabling predictive models of learning
trajectories as a function of input in naturalistic environe-
ment or in interventional studies. Finally, it could have an
impact in the field of AI itself through the establishment of
learning architectures able to learn linguistic structures much
more autonomously and robustly than is currently achieved.

3 Past work

Early language acquisition is primarily an empirical field
of research. Much of what we know has been obtained thanks
to the patient accumulation of data in two lines of work. The
first one is devoted to the collection and manual transcrip-
tion of parents and infants interactions. A large number of
datasets across languages have been collected and organized
into repositories that have proved immensely useful to the
research community. One prominent example of this is the
CHILDES repository (MacWhinney, 2000), which has en-
abled more than 5000 research papers (according to a google
scholar search as of 2016). The other line consists in measur-
ing the linguistic knowledge of infants of various ages across
different languages through the administration of experimen-
tal tests (see Jusczyk, 1997; Bornstein & Tamis-LeMonda,
2010 for reviews). Besides this impressive activity in data
gathering, the field of language development is also actively
pursuing theoretical work. Here, we briefly review three
major strands related to psycholinguistics, formal linguis-
tics and AI, respectively, and argue that even though these
strands have provided important insights into the acquisition
process, they still fall short of accounting for the two puzzles
presented in Section 2.

2Even in later acquisitions, the nature, universality and effective-
ness of corrective feedback of children’s outputs has been debated
(see Brown, 1973; Pinker, 1989; Marcus, 1993; Chouinard & Clark,
2003; Saxton, 1997; Clark & Lappin, 2011).
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Figure 1. Sample studies illustrating infant’s language development. The left edge of each box is aligned to the earliest age at
which the result has been documented. 1 Tincoff & Jusczyk, (1999); Bergelson & Swingley, (2012); 2 Mandel et al. (1995); 3

Jusczyk & Aslin (1995) 4 Mehler et al. (1988) 5 Jusczyk et al. (1999) 6 Hirsh-Pasek et al. (1987) 7 Jusczyk et al (1992) 8 Kuhl
et al. (1992) 9 Eilers et al. (1979) 10 Jusczyk et al. (1993) 11 Werker & Tees (1984) 12 Mazuka et al. (2011) 13 Stark (1980).

3.1 Conceptual frameworks and learning mechanisms

Within developmental psycholinguistics, conceptual
frameworks have been proposed to account for key as-
pects of the developmental trajectories (the competition
model: Bates & MacWhinney, 1987; MacWhinney, 1987 ;
WRAPSA: Jusczyk, 1997; the emergentist coalition model:
Hollich et al., 2000; PRIMIR: Werker & Curtin, 2005; the
usage-based theory: Tomasello, 2003; among others). These
frameworks present overarching architectures or scenarios
that integrate many empirical results. WRAPSA (Jusczyk,
1997) focuses on phonetic learning and lexical segmentation
during the first year of life. PRIMIR (Werker & Curtin,
2005) extends WRAPSA by incorporating phonetic and
speaker-related categories at an early stage, and meaning
and phonemic categories at a later stage. The emergentist
coalition model (Hollich et al., 2000) focuses on the
attentional, social and linguistic factors that modulate the
association between lexical forms and meanings at different
ages. The competition model (Bates & MacWhinney,
1987; MacWhinney, 1987) and the usage-based theory
(Tomasello, 2003) focus on grammar learning; the former
is lexicon-based and focuses on mechanisms of competitive
learning. The latter is construction-based and focuses on
social and pragmatic learning mechanisms. While these
conceptual framework are very useful in summarizing and
organizing a vast amount of empirical results, and could
serve as sources of inspiration for computational models,
they are not specific enough to address our two scientific

puzzles. They tend to refer to mechanisms using verbal
descriptions (statistical learning, rule learning, abstraction,
grammaticalization, analogy) or boxes and arrows diagrams.
This type of presentation may be intuitive, but also vague.
The same description may correspond to many different
computational mechanisms which would yield different
predictions. These frameworks are therefore difficult to
put to empirical test. In addition, because they are not
formal, one cannot demonstrate that these models can
effectively solve the language bootstrapping problem. Nor
do they provide quantitative predictions about the observed
resilience in developmental trajectories or their variations
as a function of language input at the individual, linguistic
or cultural level. Psycholinguists sometimes supplement
conceptual frameworks with propositions for specific
learning mechanisms which are tested using an artificial
language paradigm. As an example, a mechanism based
on the tracking of statistical modes in phonetic space has
been proposed to underpin phonetic category learning in
infancy. It was tested in infants through the presentation of a
simplified language (a continuum of syllables between /da/

and /ta/) where the statistical distribution of acoustic tokens
was controlled (Maye, Werker, & Gerken, 2002). It was
also modeled computationally using unsupervised clustering
algorithms and tested using simplified corpora or synthetic
data (Vallabha, McClelland, Pons, Werker, & Amano, 2007;
McMurray, Aslin, & Toscano, 2009). A similar double-
pronged approach (experimental and modeling evidence) has
been conducted for other mechanisms: word segmentation
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based on transition probability (Saffran, Aslin, & Newport,
1996; Daland & Pierrehumbert, 2011), word meaning learn-
ing based on cross situational statistics (Yu & Smith, 2007;
K. Smith, Smith, & Blythe, 2011; Siskind, 1996), semantic
role learning based on syntactic cues (Connor, Fisher, &
Roth, 2013), etc. Although studies with artificial languages
are useful to discover candidate learning algorithms which
could be incorporated in a global architecture, the algorithms
proposed have only been tested on toy or artificial languages;
there is therefore no guarantee that they would actually work
when faced with realistic corpora that are both very large
and very noisy. In fact, as discussed in section 6.1, some of
these algorithms do not scale up. In addition, it remains to
be shown that taken collectively, such learning mechanisms
(or scaled up versions thereof) would work synergistically
to solve the bootstrapping problem, as opposed to cancelling
each other’s out.

3.2 Formal linguistic models

Even though much of current theoretical linguistics is de-
voted to the study of the language competence in the sta-
ble state, very interesting work has also be conducted in the
area of formal models of grammar induction. These mod-
els propose algorithms that are provably powerful enough to
learn a fragment of grammar given certain assumptions about
the input. For instance, Tesar and Smolensky (1998) pro-
posed an algorithm that provided pairs of surface and under-
lying word forms can learn the phonological grammar (see
also Magri, 2015). Similar learnability assumptions and re-
sults have been obtained for stress systems (Dresher & Kaye,
1990; Tesar & Smolensky, 2000). For learnability results of
syntax, see the review in Clark and Lappin (2011). These
models establish important learnability results, and in partic-
ular, demonstrate that under certain hypotheses, a particular
class of grammar is learnable. What they do not demonstrate
however is that these hypotheses are met for infants. In par-
ticular, most grammar induction studies assume that infants
have an error-free, adult-like symbolic representation of lin-
guistic entities (e.g., phonemes, phonological features, gram-
matical categories, etc). Yet, perception is certainly not error-
free, and it is not clear that infants have adult-like symbols,
and if they do, how they acquired them. In other words, even
though these models are more advanced than psycholinguis-
tic models in formally addressing the effectiveness of the pro-
posed learning algorithms, it is not clear that they are solv-
ing the same bootstrapping problem than the one faced by
infants. In addition, they typically lack a connection with
empirical data on developmental trajectories.3

3.3 Developmental Artificial Intelligence

The idea of using computational models to shed light on
language acquisition is as old as the field of cognitive science
itself, and a complete review would be beyond the scope

of this paper. We mention some of the landmarks in this
field which we refer to as Developmental AI, separating three
learning subproblems: syntax, lexicon, and speech. Compu-
tational models of syntax learning in infants can be roughly
classified into two strands, one that learns from strings of
words alone, and one that additionally uses a conceptual rep-
resentation of the utterance meaning. The first strand is illus-
trated by Kelley (1967). The proposed computational model
performed hypothesis testing and constructed more and more
complex syntactic rules to account for the distribution of
words in the input. The input itself was artificial (generated
by a context free grammar) and part of speech tags (nouns,
verbs, etc.) were provided as side information. Since then,
manual tagging has been replaced by automatic tagging us-
ing a variety of approaches (see Christodoulopoulos, Gold-
water, & Steedman, 2010 for a review), and artificial datasets
have been replaced by naturalistic ones (see D’Ulizia, Ferri,
& Grifoni, 2011, for a review). This strand views grammar
induction as a problem of representing the input corpus with
a grammar in the most compact fashion, using both a pri-
ori constraints on the shape and complexity of the grammars
and a measure of fitness of the grammar to the data (see de
Marcken, 1996 for a probabilistic view). The second strand
can be traced back to Siklossy (1968), and makes the rad-
ically different hypothesis that language learning is essen-
tially a translation problem: children are provided with a par-
allel corpus of speech in an unknown language, and a con-
ceptual representation of the corresponding meaning. The
Language Acquisition System (LAS) of Anderson (1975) is
a good illustration of this approach. It learns context-free
parsers when provided with pairs of representations of mean-
ing (viewed as logical form trees) and sentences (viewed as
a string of words, whose meaning are known). Since then,
algorithms have been proposed to learn directly the mean-
ing of words (e.g., cross-situational learning, see Siskind,
1996), context-free grammars have been replaced by more
powerful ones (e.g. probabilistic Combinatorial Categorical
Grammar), and sentence meaning has been replaced by sets
of candidate meanings with noise (although still generated
from linguistic annotations) (e.g., Kwiatkowski, Goldwater,
Zettlemoyer, & Steedman, 2012). Note that all of these mod-
els take textual input, and therefore make the (incorrect) as-
sumption that infants are able to represent their input in terms
of an error-free segmented string of words.

The problem of word learning itself has been addressed
using two main ideas. One main idea is to use distribu-
tional properties that distinguish within word and between
word phoneme sequences (Harris, 1954; Elman, 1990; Chris-

3A particular difficulty of formal models which lack of a pro-
cessing component is the observed discrepancies between the devel-
opmental trajectories in perception (e.g. early phonotactic learning
in 8-month-olds) and production (slow phonotactic learning in one
to 3-year-olds).
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tiansen, Conway, & Curtin, 2005). A second idea, is to
simultaneously build a lexicon and segment sentences into
words (Olivier, 1968; de Marcken, 1996; Goldwater, 2007).
These ideas are now frequently combined (Brent, 1996a;
M. Johnson, 2008). In addition, segmentation models have
been augmented by jointly learning the lexicon and morpho-
logical decomposition (M. Johnson, 2008; Botha & Blun-
som, 2013), or tackling phonological variation through the
use of a noisy channel model (Elsner, Goldwater, & Eisen-
stein, 2012). Note that all of these studies assume that speech
is represented as an error-free string of adult-like phonemes,
an assumption which cannot apply to early language learners.
Finally, some studies have addressed language learning from
raw speech. These have either concerned the discovery of
phoneme-sized units, the discovery of words, or both. Sev-
eral ideas have been proposed to discover phonemes from the
speech signal (self organizing maps: Kohonen, 1988; cluster-
ing: Pons, Anguera, & Binefa, 2013; auto-encoders: Badino,
Canevari, Fadiga, & Metta, 2014; HMMs: Siu, Gish, Chan,
Belfield, & Lowe, 2013; etc.). Regarding words, D. K. Roy
and Pentland (2002) proposed a model that learn both to seg-
ment continuous speech into words and map them to visual
categories (through cross situational learning). This was one
of the first models to work from a real speech corpus (par-
ents interacting with their infants in a semi-directed fashion),
although the model used the output of a supervised phoneme
recognizer. The ACORNS project (Boves, Ten Bosch, &
Moore, 2007) used real speech as input to discover candi-
date words (Ten Bosch & Cranen, 2007, see also Park &
Glass, 2008; Muscariello, Gravier, & Bimbot, 2009, etc.), or
to learn word-meaning associations (see a review in Räsä-
nen, 2012). In sum, developmental AI represents the clearest
attempt so far of addressing the full bootstrapping problem.
Yet, although one can see a clear progression, from simple
models and toy datasets, towards more integrative algorithms
and more realistic datasets, there is no single proposition yet
that handles the entire speech processing pipeline, i.e., from
signal to semantics. Until this is done, it is not clear how the
bootstrapping problem as faced by infants can be solved. In
addition, the progression has been very discontinuous across
studies, and in our view, hampered by the complete lack of
cumulativity in algorithms, evaluation methods and corpora,
overall making it impossible to compare the merits of the
different ideas and register progress. Finally, even though
most of these studies mention infants as a source of inspira-
tion of the models, almost none of them try to account for
developmental trajectories.

3.4 Summing up

Conceptual psycholinguistic models try to account for
developmental trajectories but are not specified enough for
demonstrating that they can solve the bootstrapping problem.
Specific learning mechanisms address bootstrapping issues

but only apply to toy or experimental data and cannot demon-
strably scale up. This limitation calls for the need to develop
effective computational models that work at scale. Both lin-
guistic models and developmental AI attempt to effectively
address the bootstrapping problem, but make unrealistic as-
sumptions with respect to the input data (linguistic models
take only symbolic input data, and most developmental AI
models take either symbolic data or simplified inputs). As a
result, these models address a different bootstrapping prob-
lem than the one faced by infants. This would call for the
need to use realistic data as input for models. Both linguis-
tic models and developmental AI models take as their gold
standard description of the stable state in adults. This may
be fine when the objective is to explain ultimate attainment
(the bootstrapping problem), but does not enable to connect
with learning trajectory data. This would call for a direct
human-machine comparison, at all ages. Finally, a problem
with much past computational modeling research in general
is that even though they enabled quantitative predictions, the
resources used were both specific to each study and not dis-
tributed freely, making it difficult to compare the different
ideas and build on them. This calls for open sourcing these
resources. Obviously, the reviewed approaches have limits
but also address part of the puzzles. They need to be com-
bined, and the proper way to achieve this combination is ex-
amined next.

4 Four requirements

Here, we examine in more details the four require-
ments outlined above, and discuss them in the following or-
der: using realistic data, comparing humans and machines,
constructing effective computational models, open-sourcing
data, evaluation and models. We conclude by discussing bi-
ological plausibility as a possible additional requirement.

4.1 Using realistic data

One of the most serious limitations of past theoretical
work is the tendency to focus either on a simplified learn-
ing situation, a small corpus, or both, thereby failing to ad-
dress the language leaning problem in its full complexity. Of
course, simplification is the hallmark of the scientific enter-
prise, but we claim that in the present case, simplifications
often result in the learning problem itself being distorted be-
yond recognition. We therefore argue that to address the
bootstrapping problem, one has to use realistic data as in-
put. Formal learning theory provides us with many exam-
ples where idealizing assumptions about the learning situ-
ation (regarding the input to the learner or the set of tar-
get languages to be learned) have extreme consequences on
what can be learned or not. For instance, if the environ-
ment presents only positive instances of grammatical sen-
tences presented in any possible order, then even simple
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Table 1
Four studies used to estimate infant’s speech input

study reference mode of acquisition;age population
H&R Hart and Risley (1995) observer, 1h every month;

12-36 months
urban high, mid & low SES,
English

SALG Shneidman, Arroyo, Levine,
and Goldin-Meadow (2013)

observer, 1h every month;
12-36 months

urban high SES, English & ru-
ral low SES, Maya

W&F Weisleder and Fernald (2013) daylong recording; 19 months low SES, Spanish
VdW van de Weijer (2002) daylong recording; 6-9 months high SES, Dutch

Table 2
Estimates of yearly input, in total, and restricted to Child Directed Speech (CDS) , in number of hours and words (millions)
per year in four studies (see the references in Table 1) as a function of sociolinguistic group (SES: Socio Economic Status).
The numbers between brackets provide the range [min, max] of these numbers across families. t uses a wake time estimate of
9 hours per day. w uses a word duration estimate of 400ms. c uses SALG’s estimate of %CDS for high SES. d uses W&F’s
estimate of %CDS for low SES. m uses H&R’s MLU’s estimates (according to SES).

Yearly total Yearly CDS
Hours Words (M) Hours Words (M)

Urban, high SES
H&R (N=13)t 1221w,c [578,1987] 11.0c [5.20, 17.9] 786w [372, 1279] 7.07 [3.35, 11.5]
SALG (N=6)t 2023w,m [1243, 2858] 18.2m [11.2, 25.7] 1223w,m [853, 1574] 11.0m [7.7, 14.2]
VdW (N=1) 931 9.28 140 1.39

Urban, low SES
H&R (N=6)t 363w,d [136, 558] 3.26d [1.22, 5.02] 225w [84, 346] 2.02 [0.76., 3.11]
W&F (N=29)t 363w [52, 1049] 3.27 [0.46., 9.44] 225w [32, 650] 2.03 [0.29, 5.85]

Rural, low SES
SALG (N=6)t 503w,m [365, 640] 4.53m [3.28, 5.76] 234w,m [132, 322] 2.10m [1.19, 2.90]

classes of grammars (e.g., finite state or context free gram-
mars, Gold, 1967) are unlearnable. In contrast, if the envi-
ronment presents sentences according to processes that can
be recursively enumerated (an apparently innocuous require-
ment), then even the most complex classes of grammars (re-
cursive grammars)4 become learnable. This result extends to
a probabilistic scenario where the input sentences are sam-
pled according to a statistical distribution: constraints about
the shape of the distribution radically changes the difficulty
of the learning problem (see Angluin, 1988). In addition,
the presence of side information can make a substantial dif-
ference: providing the syntactic trees along with the phono-
logical form can turn an unlearnable problem into a learn-
able one (Sakakibara, 1992). The scale of the dataset can
also have drastic effects, even when realistic data is used.
This is illustrated by the history of automatic speech recog-
nition systems. This field started to construct systems aimed
at recognizing a small vocabulary for a single speaker (sin-
gle digits) in the 50’s, and nowadays handles multiple speak-
ers with large vocabularies in spontaneous speech. By mov-
ing from small scale to big scale problems the field did not

only use bigger models and more powerful machines, but
had to build systems based on completely different princi-
ples (in order of appearance, formant based pattern match-
ing, dynamic programming, statistical modeling, neural net-
works). Such heavy dependence on the scale and realism
of the dataset is even more apparent with models of learn-
ing. For instance, dramatically different performances are
found when word segmentation algorithms (which attempt
to recover word boundaries from continuous speech) are fed
with a phoneme transcription or when they are fed with raw
speech signals (Jansen, Dupoux, et al., 2013; Ludusan, Ver-
steegh, et al., 2014). Addressing the data scalability prob-
lem can be done according to two approaches. One ap-
proach is to work with idealized inputs generated by simple
formal grammars or probabilistic models, which are made
more complex incrementally to approximate real data. While
this approach, pursued by formal learning theory, yield in-

4The problem of unrestricted presentations is that, for each
learner, there always exists a ’nemesis’, an evil environment that
will trick the learner into converging on the wrong grammar (see
Clark & Lappin, 2011 for a detailed explanation).
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teresting learnability theorems, it has to face the fact that
there is currently no known formal grammar that ultimately
characterizes the class of human languages (e.g., Jäger &
Rogers, 2012). Even if it were the case, the particular pre-
sentation of the target language and associated side infor-
mation that result from caretaker’s communicative and peda-
gogic intentions has not been formally characterized. This
approach therefore runs the risk of locking researchers in
a bubble universe where idealized learning problem can be
shown to be tractable, but are unrelated to that faced by in-
fants in the real world. The second approach, which we
promote as "reverse engineering" takes a radical step: in-
stead of relying on formal descriptions of possible inputs,
it uses actual, attested, raw data to reconstruct infant’s sen-
sory input. Here, it is still possible to do idealizations, but
they would be expressed in terms of what transformation is
done to the raw data before being fed to the learning sys-
tem (for instance: selecting frequency bands based on the
capacity of the auditory system, performing auditory scene
analysis, etc.). We discuss three important consequences of
this proposed solution: qualitative, quantitative, and cross-
linguistic. On the qualitative side, as the input is now defined
in terms of the sensory experience of the learner, there is not
necessarily a predefined or preformatted language ’channel’.
The reason for this is that the linguistic signals emitted by
the parents are typically mixed with a variety of non lin-
guistic signals in a culture dependent way. In addition, the
physical medium of linguistic signals also vary from cul-
ture to culture. In the audio channel for instance, speech
sounds are heard by infants mixed with all manners of back-
ground noise, music, and non linguistic vocal sounds. Within
vocal sounds, click noises are considered non linguistic in
many languages, but some languages use them phonologi-
cally (Best, McRoberts, & Sithole, 1988). In the visual chan-
nel, some amount of linguistic/communicative signals (ges-
tures, mouth movements) is present in all cultures (Fowler
& Dekle, 1991; Goldin-Meadow, 2005), but it becomes the
dominant language channel in deaf communities using sign
language (Poizner, Klima, & Bellugi, 1987). However, sign
language can be used as native language even in hearing chil-
dren, provided they are raised in mixed hearing/deaf commu-
nities (Van Cleve, 2004). Cross-cultural variation makes it
impossible to innately specify a fixed way of unmixing these
signals or selecting a language channel. It is therefore part of
the language learning problem to separate the linguistic sig-
nals from the non-linguistic background. Using realistic in-
puts, instead of idealized ones would also expose the learner
to linguistic signals that are corrupted or partially masked
by other linguistic or non-linguistic signals. This cannot be
entirely be dealt with through low level processing, as it is
know that auditory source separation interacts with speech
recognition (e.g. Warren, 1970). Similarly, dysfluencies and
speech errors at many levels (Fromkin, 1984), individual dif-

ferences (e.g., Hillenbrand, Getty, Clark, & Wheeler, 1995)
and sociol-linguistics variation (Labov, 1972) are all factors
are intgral to the learning problem and cannot be considered
independantly solved. Yet, realistic inputs may also bring
about potential benefits through ’side information’. As an
example, syntax learning could be helped through the detec-
tion of prosodic information present in the signal. Prosodic
boundaries may not always be coincidental with syntactic
boundaries, but they could provide to the learner useful side
information for the purpose of syntax and lexical acquisition
(e.g. Christophe, Millotte, Bernal, & Lidz, 2008; Ludusan,
Gravier, & Dupoux, 2014). Similarly, semantic information
in the form of visually perceived objects or scenes and af-
ferent social signals may help lexical learning (D. K. Roy
& Pentland, 2002) and help bootstrap syntactic learning (the
semantic bootstrapping hypothesis, see Pinker, 1984).On the
quantitative side, it is important that the totality of the input
is being considered for the following reasons. First, it sets
up boundary conditions for the learning algorithms. Algo-
rithms that require more input than is generally available to
infants can be ruled out. As an example, current distribu-
tional semantic models use between 3 and 100 billion words
to learn vector representations for the meaning of words or
short phrases based on adjacent words (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013; Word2vec Google Project
Page, 2013). This is between 30 and 1000 times more data
than infants are typically exposed to during their first 4 years
of life, in fact, more than most people get in a lifetime, and
therefore not plausible as the sole mechanism for meaning
learning. Vice versa, an algorithm that would require only
10% of what infants get would display superhuman capaci-
ties and therefore not be a good model either. Second, es-
tablishing variability in input, and in particular, the range
of extreme variation would enable to quantify the resilience
that human infants display, and which have to be matched
by a successful computational model. See Tables 2 and 1
for an estimation of the amount of speech data available to
infants in different cultures. On the cross-linguistic side, a
successful model of the learner should not demonstrate learn-
ing for only one input dataset, but it should learn for any in-
put dataset in any possible human language in any modality
(see the equipotentiality criterion in Pinker, 1987). Since,
as we argued above, the class of all possible language in-
puts it still not formally characterized, one could take the
approach of sampling from a finite but ever expanding set of
existing linguistic communities. An adequate sampling pro-
cedure would insure that, statistically speaking, a given com-
putational model is (or is not) able to learn from any possible
input. Practically speaking, it may be interesting to sample
typologies and sociolinguistic groups in a stratified fashion
to avoid over-fitting the learning model to a restricted set
of learning situations.To sum up, using realistic input is the
only way to make sure that modelers are addressing the right
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learning problem. This has significant consequences regard-
ing the size of the dataset that has to be collected : complete
sensory coverage over the first 3 or 4 years of life, for a rep-
resentative sample of children over a representative sample
of languages. Before such a dataset is available, of course, it
is still interesting to use as proxy a variety of smaller or sim-
plified datasets, provided that the sources of simplification
are clearly stated and their implications for generalizability
discussed.

4.2 Evaluating systems through human-machine com-
parison

For a modeling enterprise of any sort, it is important to
specify a success criterion. A lingering limitation of past the-
oretical work is that too many distinct success criteria have
been used. In fact, the diversity is so great that it is nearly
impossible to compare the different propositions across re-
search fields (and sometimes even within field), and to reach
the same standards as cumulative science. For psycholin-
guistic conceptual frameworks, the primary success criterion
is the ability to account for developmental trajectories. Be-
cause of the verbal nature of these frameworks, it can only
be checked at an intuitive and qualitative level. For linguis-
tic formal learning models, the main focus is the learnabil-
ity puzzle and is usually defined in terms of learnability in
the limit (Gold, 1967): A learner is said to learn a target
grammar in the limit, if after some amount of time, his own
grammar becomes equivalent to the target grammar. This
standard formulation has been criticized as too lax (K. John-
son, 2004). Since there is no time limit on convergence, a
learner that needs a million year’s worth of data to converge
would still be deemed successful. We know that most chil-
dren converge on an adult grammar in a fixed number of
years, which is bounded by puberty. Therefore, our learn-
ability criterion should be stronger and require the system to
converge on a grammar after the same amount of input that it
takes for children to converge. In addition the standard crite-
rion assumes that one can determine when two grammars are
equivalent, which may not be tractable.5 Finally, for the de-
velopmental AI models that we reviewed, system evaluation
was not their strong selling point. Many provided only quali-
tative evaluations, but for those that did provide a numeric
one, they were typically defined in relation to a so called
gold standard, i.e. human annotations (like phoneme tran-
scriptions, part of speech annotations, parse trees, etc). The
success of the learning algorithm is then measured as a dis-
tance between the machine annotation and the gold one. Of
course, these evaluations are only valid to the extent that the
gold standard reflects the state of the human language com-
petence. This is not necessarily the case for adult-machine
comparisons, as linguists may disagree on some of the an-
notations, and certainly not the case for children-machine
comparisons, as the infant’s grammar is probably different

from that of the linguistically-trained adult. We therefore
claim that for the reverse engineering approach, none of these
criteria, taken individually, are satisfactory. Prior advocates
of the use of machine learning to model language acquisi-
tion have proposed a number of ways to combine these cri-
teria. To quote a few, MacWhinney (1978) proposed 9 crite-
ria, Berwick (1985), 9 criteria (different ones), Pinker (1987)
6 criteria, Yang (2002) 3 criteria, M. C. Frank, Goldwater,
Griffiths, and Tenenbaum (2010) 2 criteria. These can be
sorted into conditions about effective modeling (being able
to generate a prediction), about the input (being as realistic
as possible), about the end product of learning (being adult-
like) and about the plausibility of the computational mech-
anisms. In our proposed reverse engineering approach, we
would like to integrate within a single operational criterion,
the cognitive indistinguishability criterion, the insights of the
psycholinguistic theories with the quantitative evaluations of
the formal and algorithmic models:

A human and a machine are cognitively in-
distinguishable with respect to a given set of
tests when they yield numerically similar results
when ran on these tests.

The proposal, therefore, is that, a computational model of
language learning is successful, when it yields a system that
is cognitively indistinguishable from a human (adult or child)
after having been fed with the same input data. Such a suc-
cess criterion enables both to address the learnability puz-
zle and to account for developmental trajectories. Note,
however, that cognitive indistinguishability is not an abso-
lute criterion but depends on a set of tests. Constructing
an agreed upon set of such tests (a cognitive benchmark)
becomes therefore part of the reverse engineering project
by integrating tests that linguists and psycholinguists agree
upon as being relevant to characterizing grammatical com-
petence in humans. This benchmark can of course be re-
vised as new and more subtle experimental protocols for lan-
guage competence are discovered and can set the human and
machine apart. Here, we present three conditions that such
tests must satisfy to achieve our scientific objectives: they
should be administrable (to adults, children and computers
alike), valid (measure the construct under study as opposed
to something else), and reliable (with a good signal to noise
ratio). The last two conditions are common in psychomet-
rics and psychophysics (e.g., Gregory, 2004). Test validity
refers to whether a test, both theoretically and empirically, is
sensitive to the psychological construct (state or process) it
is supposed to measure. For instance, in an influential paper,

5Two grammars are said to be weakly equivalent if they generate
the same utterances. In the case of context free grammars, this is an
undecidable problem. More generally, for many learning algorithms
(e.g., neural networks), it is not even clear what has been learned,
and therefore the criterion cannot be verified.
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Turing (1950) proposed to test whether machines can ’think’
using the so-called imitation game, where it had to persuade
a human observer that it was a female human through an on-
line keyboard conversation. The machine succeeds if it fools
the observer as often as a human male participant would.
This test is evidently not valid, as theoretically, ’thinking’
is not a well defined psychological construct, but rather a
polysemous folk psychology concept, and empirically, it is
rather easy to fool human observers using rather simplistic
text manipulation rules (see ELIZA, Weizenbaum, 1966).
Fortunately, since the 50’s, cognitive psychology has pro-
gressed tremendously and can offer a rich set of valid tests
for the evaluation of language-related cognitive components
(see Section 5.2). Test reliability refers to the signal to noise
ratio of the measure. It can be evaluated by rerunning the
same tests over the same or different participants for hu-
mans, or over different initial conditions for the machines.
Typically, test reliability is not thought to be a real issue for
machines, to the extent that many algorithms are determin-
istic or assumed to be quite stable. Yet, it is important to
assess this reliability empirically, for instance, by running
the same algorithm over different samples of a large corpus.
As for humans, test reliability is a very important issue, and
even more so, for children and infants. Evidently, we cannot
ask that the match between humans and machines be larger
that the match within population. Test administrability does
not belong to standard psychometrics, but it is especially im-
portant in the case both of infants and machines. Human
adults have metalinguistic abilities which allow the experi-
menter to explain to them how to perform a particular test,
in simple words. Such a strategy is not directly applicable
to human infants nor to machines. In infants, a testing ap-
paratus has to be constructed, i.e., a rather artificial environ-
ment whereby everything is controlled so that the response
to test stimuli arises naturally and is measured using spon-
taneous tendencies of the participants (preference methods,
habituation methods, etc; see Hoff, 2012, for a review).6 In
machines, there is also an issue of administrability. Typi-
cally, learning algorithms are not constructed to run linguis-
tic tests, but to learn based on their input. Therefore, they
need to be supplemented with particular task interfaces for
each of the proposed tests in order to extract a response that
would be equivalent to the response generated by humans.7

In both cases, administering the task has to be made so as
not to compromise the test’s validity. Biases or knowledge
of the desired response has to be removed from the testing
apparatus (for the infants) and from the interface (for the ma-
chine). To sum up, to evaluate computational models, the
reverse engineering approach proposes to build a revisable
benchmark of valid and reliable tests measuring the various
components of the human language faculty, and that can be
administered to humans of various ages and machines alike.
Models will be compared on their ability to mimic the results

of these tests.

4.3 Constructing effective computational models

As discussed in Section 3, past work in psycholinguis-
tics, formal linguistics and many studies in developmental
AI were not centered on the task of building effective sys-
tems which would work with real data. As a result, they
could not provide a proof of principle that the bootstrapp-
ping problem can be solved nor be used to generate quan-
titative predictions. However, we know that contructing ef-
fective processing system which deal with realistic input is
possible: the recent successes of machine learning in speech
and language tasks demonstrate it. Specifically, Speech and
Language Technologies (SLT) is the area of engineering re-
search devoted to construct systems that perform complex
functions like converting speech to text (Automatic Speech
Recognition), or conducting a simple question/answer dia-
logue with large scale noisy data (Natural Language Process-
ing). These are behind the rise of voice services on smart-
phones (Siri, Cortana, etc). The main design feature of SLT
systems is that even though they contain components that
are related to psycholinguistic and linguistic levels of rep-
resentations (for instance acoustic models incorporate pho-
netic and phonological information, language models incor-
porate lexical and syntactic information, discourse models,
semantic and pragmatic information, and so on), it is not
assumed that any of these representations are unambiguous
and errorless. On the contrary, the handling of ambiguities
and errors is built in from the ground up, through a pro-
cessing architecture where, multiple and/or partial interpre-
tations are passed in parallel from one level to the next along
with their probabilities or activation levels, enabling the er-
rors and ambiguities to be resolved in a holistic and optimal
fashion (for a statistical framework in speech processing, see
Jelinek, 1997, for a review of natural language processing,
see (J. H. Martin & Jurafsky, 2008)). The problem is that
these engineering systems are notat all models of the learning
processes in infants. Instead, they are directly constructed
as full-blown, performing adult. Furthermore, the way they
are constructed uses a substantial amount of ’supervision’,
i.e., direct intervention of experts regarding how the system
should be tuned depending on the language and application
at hand. Early systems were heavily engineered, with each
subcomponent crafted and tuned by hand by a team of ex-
perts. Nowadays, only a general architecture is specified, and
the model parameters (in very large numbers) are tuned au-
tomatically using numerical optimization techniques run on

6In animals, before tests can be run, an extensive period of train-
ing is often necessary, in order for the animal to comply with the
protocol. Such procedures are not possible in human infants.

7A task interface can be viewed as a function which takes as
input the internal states of the algorithm generated by the stimuli
and delivers a binary or real valued response.
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(very large) datasets of human annotated speech or text. For
instance, a typical state-of-the-art speech recognition compo-
nent is trained with hours of hand transcribed speech (10000
hours or more), with a large pronunciation dictionary, and a
few billion words of text. A language understanding com-
ponent is trained with a bank of sentences annotated with
part of speech and parse trees. All of these expert language
resources are unfortunately not available to infants learning
their native language(s). In brief, engineering approaches
propose scalable processing systems, but even though they
are based on statistical learning, they do not use cognitively
plausible learning mechanisms because they rely on data not
available to infants. The idea of the reverse engineering ap-
proach is, therefore, to use the general design principes and
methods of SLT for robust and scalable processing, perhaps
even adapting some of their algorithms with the aim at con-
structing systems that learn like infants do. To acheive this
goal, two issues need to be addressed: the constructed sys-
tem can learn without expert labels (using realistic data),
the constructed system can be tested at every stage of de-
velopment (using human benchmarks). Technically, learn-
ing mechanisms that only use raw signals (or indirect human
feedback or ‘labels’) are called unsupervised (or weakly su-
pervised). This class of machine learning problems is unfor-
tunately less well studied and understood than the supervised
learning ones (classification, regression, etc). Learning with-
out external labels is obviously more difficult than learning
with labels. Humans labels provide simultaneously a target
representation that enable to evaluate how well the machine
reproduce human competence, and an error function (the dif-
ference between the human provided and machine computed
labels) that is optimized using numerical methods in order
to reach this objective. With unsupervised problems, every-
thing changes: the labels can still used to evaluate the ma-
chines’s performance, but no longer for optimizing it. In-
deed, the machine only has access to the inputs, and has to
learn its own (so-called latent) representations of the input.
This can also be written as an optimization problem, but the
error function cannot refer to the labels (typically, the sys-
tem’s objective is to model its input, for instance, to predict
future inputs based on past ones). Therefore the problem is
much more underdetermined, and it is not clear that the latent
representations will be anywhere near to the human labels.
As for testability, the models have to be constructed so as
to be able to process data at any intermediate learning state,
including, in the initial state, ie, before any data has been pre-
sented at all. This precludes algorithms that optimize over an
entire input corpus to directly construct a stable state in one
step (example are segmentation algorithms that construct a
lexicon by optimizing over the entire corpus, Brent, 1999).
This, in contrast, favors algorithms that posess some form of
incrementality (e.g., learn sentence by sentence, Pearl, Gold-
water, & Steyvers, 2010, or day by day, assuming learning

takes place during sleep). Oc course, the models have to be
adapted, so as to be testable and can run experiments using
test interfaces as described in Section 4.2.

To sum up, the best available option for constructing a
scalable computational model of language learning comes
from SLT systems, which needs to be refactored to work
without expert supervision (no linguistic labels) in a weakly
or unsupervised fashion, and to provide a testable processing
system at all stages of development.

4.4 Open sourcing data, benchmarks and models

As any scientific endeavor, the reverse engineering ap-
proach proposed adheres to standard in transparency of pro-
cess and replicability. As was noted above, many of the ear-
lier attempts to bring machine learning to bear to issues of
language development were too disconnected to allow cu-
mulative science to proceed. It is therefore central for this
proposal to share language datasets, test benchmarks and ref-
erence systems in an open source format to enable compar-
ison of different models and enable new players to try their
own ideas. Open source benchmarks, datasets and models
are very common in many areas of machine learning, promi-
nently in vision (e.g. the Imagenet dataset8, Deng et al.,
2009). This is less the case in speech and language, as many
speech resources are protected or proprietary, thereby slow-
ing down progress. Yet, this is changing quickly as open
source speech databases are being constructed (for instance,
the Librispeech dataset9, Panayotov, Chen, Povey, & Khu-
danpur, 2015, and the Kaldi speech tools10, Povey et al.,
2011).

4.5 A biological plausibility requirement?

Here we briefly discuss one issue which often comes up
when computational systems are used as models of human
processing: the issue of biological plausibility. By this,
we mean that the hypothetical algorithm be compatible with
what we know about the biological systems that underlie
these computations in human infants/adults. While this con-
straint is perfectly reasonable, we argue that it is difficult
to apply to the modeling of early language acquisition for
the following reasons: First, the computational power of a
human brain is currently unknown. Current supercomputers
can simulate at a synapse level only a fraction of a brain and
several orders of magnitude slower than real time (Kunkel
et al., 2014). If this is so, all computational models run in
2016 are still massively underpowered compared to a child’s
brain. Second, a particular algorithm may appear to be too
complex for the brain, but a different version performing the

8http://www.image-net.org
9http://openslr.org

10http://kaldi-asr.org
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same function will not. For instance, some word segmenta-
tion algorithms require a procedure called Gibbs sampling,
which, in theory, require an infinite number of time steps to
converge. This would seem to discredit the algorithm allto-
gether. Yet, it turns out that a truncated version of this al-
gorithm running in finite time works reasonably well. Simi-
larly, algorithms that require a lot of time steps can be rewrit-
ten into algorthms that require less steps and more memory.
This makes a priori claims of biological plausibility diffi-
cult to make. Still, biological plausibility can place some
theoretical bounds on system complexity at the initial state.
Indeed, the initial state is constructed on the basis of the
human genome plus prenatal interactions with the environ-
ment. This allows to rule out, for instance, a 100% nativist
acquisition model that would pre-compile a state-of-the-art
language understanding systems for all of the existing 6000
or more languages on the planet, plus a mechanism for se-
lecting the most probable one given the input.11 Apart from
this rather extreme case, biological plausibility may not af-
fect much of the reverse engineering approach until more is
known about the computational capacity of the brain. Yet, it
is compatible with our approach, since as soon as diagnos-
tic tests of language computation in the brain are available,
they could be added to the cognitive benchmark, as defined
in Section 4.2.

5 Feasibility and Challenges

We now turn to the feasibility of the reverse engineering
approach as applied to early language acquisition. To do so,
we first limit ourselves to the following simplifying scenario:
the total input available to a particular child provides enough
information to acquire the grammar of the language present
in the environment. This may seem an innocuous assump-
tion, but it essentially puts us in the open loop situation de-
scribed in Figure 2), where the environment delivers a fixed
curriculum of inputs (utterances and their sensory contexts)
and the learner recovers the grammar that generated the utter-
ances. In this situation, the output of the child is not modeled,
and the environment does not modify its inputs according to
her behavior or inferred internal states. We come back to this
simplifying assumption in Section 7. Within this framework,
we discuss how the four requirements can be met using cur-
rent technology and the possible roadblocks that arise in the
process of deploying this technology. As the fourth require-
ment is a methodological one which applies to the first three,
we will not be discussing it separately. We will therefore re-
view, in turn, the feasibility and challenges of data collection,
testing and modeling.

5.1 Data Collection and Privacy

The requirement of using realistic data as input to the
learner raises two issues, one technological and one ethi-
cal. At the technological level, it has become relatively easy

Figure 2. a. The (simplified) learning scenario: The Child’s
internal state is a grammar Gch(t) that can be updated through
the learning function L based on input I(t). The environ-
ment’s internal state is a constant adult grammar Gad and a
variable context Cen, which produces the input to the child. b.
Method to test the empirical adequacy of the model by com-
paring the outcome of psycholinguistic experiments with that
of children and adults.

to record virtually unlimited amounts of good quality audio
and video data in children’s environments. Perhaps the most
ambitious data collection effort so far has been done within
the Speechome project (D. Roy, 2009), where video and au-
dio equipment was installed in each room of an apartment,
recording 3 years’ worth of data around one infant. Wear-
able recorders (see for instance the LENA system, Xu et al.,
2008) enable recording the infant’s sound environment for
a full day at a time, even outside the home. These can be
supplemented with position sensors to categorize activities
(Sangwan, Hansen, Irvin, Crutchfield, & Greenwood, 2015),
or Life logging wearable devices to capture images every 30
seconds in order to reconstruct the context of speech inter-
actions (Casillas, 2016). Of course, part of the technologi-
cal challenge is not only to record raw data, but also to re-
construct the infant’s sensory experience, from a first person
point of view. In this context, head-mounted cameras can
be useful to estimate the infant’s head (and therefore aver-
age gaze) direction (L. B. Smith, Yu, Yoshida, & Fausey,
2015). Recent progress in 3D reconstruction, especially
when using multi-view and/or depth sensors make it pos-
sible to go further in sensory reconstruction (e.g., Mustafa,
Kim, Guillemaut, & Hilton, 2016) although this has not yet
been done with infant data. Finally, even raw sensory data
is difficult to use if it not supplemented with reliable linguis-
tic/high level annotations. For instance, a large part of the

11The reason such system would not be biologically realizable is
that the parameters of a state-of-the-art phoneme recognition system
for a single of these languages already require 10 times more mem-
ory storage than what is available in the fraction of the genome that
differentiate humans from apes. A DNN-based phone recognizer
has typically more than 200M parameters, which barring ways to
compress the information, takes 400Mbytes. The human-specific
genome is 5% of 3.2Gbase, which boils down to only 40Mbytes.
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Speechome corpus’s audio track has been transcribed using
semi-automatized means, enabling the search for linguistic
characteristics of both the input to the child and its output
(B. C. Roy, Frank, DeCamp, Miller, & Roy, 2015). Con-
tinuous progress in machine learning (speech recognition:
Amodei et al., 2015b; object recognition: Girshick, Don-
ahue, Darrell, & Malik, 2016; action recognition: Rahmani,
Mian, & Shah, 2016; emotion recognition: Kahou et al.,
2015) will enable to lower the burden on high-level anno-
tation of large amounts of data. The technological aspect
of massive data collection, however, appears relatively sim-
ple when compared with the ethical challenges raised by the
need to make this data accessible to the research commu-
nity. There is a tension between the requirement of sharabil-
ity and open scientific data (see Section 4.4), and the need
of protecting individual privacy when it comes to personal
and sensitive data. Up to now, the response of the scientific
community has been dichotomous: either make everything
public (as in the open access repositories like CHILDES,
MacWhinney, 2000), or completely close off the corpora to
anybody outside the institution that has recorded the data
(as in the Riken corpus, Mazuka, Igarashi, & Nishikawa,
2006, or the Speechome corpus D. Roy, 2009). The first
strategy sacrifices privacy and is impossible to scale up to
dense recordings. The second strategy puts such an obsta-
cle to the scientific use of the corpora that it almost defeats
the purpose of conducting the recording in the first place. A
number of alternative strategies are being considered by the
research community. The Homebank repository contains raw
and transcribed audio, with a restricted case by case access
to researchers (VanDam et al., 2016). Databrary has a sim-
ilar system for video recordings (https://nyu.databrary.org).
Progress in cryptographic techniques would make it possi-
ble to envision preserving privacy while enabling more open
exploitation of the data. For instance, the raw data could
be locked on secure servers, thereby remaining accessible
and revokable by the infants’ families. Researchers’ access
would be restricted to anonymized meta-data or aggregate
results extracted by automatic annotation algorithms. Differ-
ential privacy techniques enable outside participants to make
queries on databases while providing a level of guarantee
on the amount of private information that can be extracted
(Dwork, 2006). The specifics of such a new type of linguis-
tic data repository would have to be worked out before dense
speech and video home recordings can become a mainstream
tool for infant research. In brief, massive data collection is
technically feasible, but it’s exploitation in an open source
format requires specific developments in privacy-preserving
storage and computing infrastructures.

5.2 Cognitive Benchmarking and Experimental Relia-
bility

Our second requirement, the construction of a cogni-
tive benchmark for language processing, can be considered
a done thing in the case of the human adult. The lin-
guistic and psycholinguistic communities have indeed con-
structed relatively easy-to-administer, valid and reliable tests
of the main components of linguistic competence in per-
ception/comprehension (see Table 3). These tests are easy
to administer because they are conceptually simple and can
be administered to naive participants; most of them are of
two kinds: goodness judgments (say whether a sequence of
sound, a sentence, or a piece of discourse, is ’acceptable’, or
’weird’) and matching judgments (say whether two words
mean the same thing or whether an utterance is true of a
given situation, which can be described in language, picture
or other means). The validity of linguistic tests often stems
from the fact that they are used within a minimal set design.
Such design selects examples where only one linguistic con-
struct is manipulated while every other variable is kept con-
stant (for instance: ’the dog eats the cat’ and ’the eats dog the
cat’ only differ in word order). Regarding test reliability, as
it turns out, many linguistic tests are quite reliable, as 97%
of the results in a textbook of linguistics are replicable using
on-line experiments (Sprouse, Schütze, & Almeida, 2013)12.
Given the simplicity of these tasks, it is relatively straight-
forward to apply them to machines. Indeed, matching judg-
ments between stimulus A and stimulus B can be derived by
extracting from the machine the representations triggered by
stimulus A and B, and compute a similarity score between
these two representations. Goodness judgments are perhaps
more tricky; they can easily be done by generative algorithms
that assign a probability score, a reconstruction error, or a
prediction error to individual stimuli. As seen in Table 3,
some of these tests are already being used quite standardly in
the evaluation of unsupervised learning systems, in particu-
lar, in the evaluation of phonetic and semantic levels) while
for others they are less widespread.13 Of course, in order to
evaluate the ability of models to account for developmental
trajectories (second puzzle) we must also compare machines
with children. This is where the difficult challenge lies. The
younger the child, the more difficult it is to construct reli-
able tests. The replicability crisis (see Ioannidis, 2012; Open
Science Collaboration, 2015) has barely hit developmental

12This is a simplification of the situation: even in simple psy-
chophysical tasks, humans can be affected by many other factors
like attention, fatigue, learning or habituation to stimuli or regular-
ities in stimulus presentations, etc. Methods try to minimize but
never totally suceed in neutralizing these effects.

13Regarding the evaluation of word discovery systems, see the
proposition by Ludusan, Versteegh, et al. (2014) but see Pearl and
Phillips (2016) for a counter proposal and a discussion in (Dupoux,
2016).
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Table 3
Example of tasks that could be used for a Cognitive Benchmark.

Task description in human
adults

Linguistic level Equivalent task in children Equivalent task in machines

Well-formedness judgement
does utterance S sound good?

phonetic,
prosody,
phonology,
morphology,
syntax

preferential looking (9-month-olds: Jusczyk,
1997), acceptability judgment (2-year-olds: de
Villiers and de Villiers, 1972; Gleitman, Gleit-
man, and Shipley, 1972)

reconstruction error (Allen & Seiden-
berg, 1999), probability (Hayes & Wilson,
2008), mean or min log probability (Clark,
Giorgolo, & Lappin, 2013)

Same-Different judgment
is X the same sound / word /

meaning as Y?

phonetic,
phonology,
semantics

habituation / deshabituation (newborns, 4-month-
olds: Eimas, Siqueland, Jusczyk, & Vigorito,
1971; Bertoncini, Bijeljac-Babic, Blumstein, &
Mehler, 1987), oddball (3-month-olds: Dehaene-
Lambertz, Dehaene, et al., 1994)

AX/ABX discrimination (Carlin, Thomas,
Jansen, & Hermansky, 2011; Schatz et al.,
2013), cosine similarity (Landauer & Du-
mais, 1997)

Part-Whole judgment
is word X part of sentence S?

phonology, mor-
phology

Word spotting (8-month-olds: Jusczyk, Houston,
& Newsome, 1999)

spoken web search (Fiscus, Ajot, Garofolo,
& Doddingtion, 2007)

Reference judgment
does word X (in sent S) refer to
meaning M?

semantics, prag-
matics

intermodal preferential looking (16-month-olds:
Golinkoff, Hirsh-Pasek, Cauley, & Gordon,
1987), picture-word matching (11-month-olds:
Thomas, Campos, Shucard, Ramsay, & Shucard,
1981)

picture/video captioning (e.g., Devlin,
Gupta, Girshick, Mitchell, & Zitnick,
2015), Winograd’s schemas (Levesque,
Davis, & Morgenstern, 2011)

Truth/Entailment judgment
is sent S true (in context C)?

semantics Truth Judgment Task (3-year-olds: Abrams,
Chiarello, Cress, Green, & Ellett, 1978; Lidz &
Musolino, 2002)

visual question answering (Antol et al.,
2015)

Felicity judgement
would people say S to mean M
(in context C)?

pragmatics Ternary reward task (5-year-olds: Katsos &
Bishop, 2011), Felicity judgment task (5 years
olds: Foppolo, Guasti, & Chierchia, 2012).

?

psychology yet because there are so few replications in the
first place (although, see the Many Babies project, M. Frank,
2015). Addressing this challenge would require improving
substantially the reliability of the experimental techniques.
Existing meta-analyses highlight large differences in effect
sizes across experimental methods (community-augmented
meta-analyses: Tsuji, Bergmann, & Cristia, 2014, metalab:
http://metalab.stanford.edu/), which point to ways to improve
the methods. If the method’s signal-to-noise reach a plateau,
there is the possibility to increase the number of participants
through collaborative testing, as in genome-wide association
studies, where low power requires a consortium to run very
large number of participants (e.g., around 200,000 partici-
pants in Ehret, Munroe, Rice, & al., 2011) or increase the
number of data points per child (perhaps using home-based
experiments: L. Shultz, 2014, https://lookit.mit.edu/, or V.
Izard, 2016, https://www.mybabylab.fr). In brief, while a
cognitive benchmark can be established, some of the fine
grained predictions of reverse engineering models in infants
will require progress in developmental experimental meth-
ods.

5.3 Unsupervised learning of speech and language un-
derstanding

The third requirement of constructing effective computa-
tional models of the learner faces one major challenge: the
feasibility of unsupervised or weakly supervised learning,
i.e. to learn latent linguistic representations instead of being
force-feed these representations through expert annotations.
Two main, non exclusive, ideas are being explored to ad-
dress this challenge. One idea could be referred to under the
generic name of prior information. It is the idea that one can
replace some of the missing labels (expert information) by
innate knowledge about the structure of the problem. With
strong prior knowledge, some logically impossible induc-
tion problems become solvable.14 The reasoning here is that
evolution might have given the learning system strong prior
knowledge about some universal regularities of language,
such that only few data points are necessary to learn the rel-

14One good illustration is the following: can you tell the colors
of 1000 balls in an urn by just selecting one ball? The task is impos-
sible without any prior knowledge about the distribution of colors
in the urn, but very easy if you know that all the balls have the same
color.
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Figure 3. Outline of a generative architecture learning jointly words and phonemes from raw speech (from Lee, O’Donnell &
Glass, 2015).

evant system. Such ideas have been proposed in the acquisi-
tion of syntax under the name of principles and parameters.
Under this theory, a single sentence (called a trigger) is suf-
ficient to decide on one parameter (Gibson & Wexler, 1994;
Sakas & Fodor, 2012). An illustration of such a system for
learning phonemes and words from raw speech uses a very
specific generative architecture to guide the learning process
(Lee & Glass, 2012; Lee, O’Donnell, & Glass, 2015, see
Figure 3). The second idea is that of soft constraints coming
from a large interconnected system. Instead of trying to learn
each subcomponent of language in isolation, the idea is to
integrate these subsystems in a general language processing
architecture, and let the subcomponent constrain each other.
Because each subcomponent is solving a different optimiza-
tion problem, they are providing the other subsystems their
own view of what has to be learned. For instance, in the do-
main of phonetic learning it has been shown that even an im-
perfect, automatically discovered lexicon can help improv-
ing on subword representations using allophonic representa-
tions (A. Martin, Peperkamp, & Dupoux, 2013; Fourtassi &
Dupoux, 2014) or the raw speech signal (Jansen, Thomas, &
Hermansky, 2013; Thiollière, Dunbar, Synnaeve, Versteegh,
& Dupoux, 2015, see Figure 4). This idea has been discussed
under different guises (multitask learning: Caruana, 1997;
multi-cue integration: Christiansen et al., 2005), but is per-
haps best expressed under the notion of learning synergies
(M. Johnson, 2008). Synergies correspond to the fact that
jointly learning two aspects of language is easier than learn-
ing either one alone.15 They have been documented among
others, between phonemes and words inventories (Feldman,
Myers, White, Griffiths, & Morgan, 2011), syllables and
words segmentation (M. Johnson, 2008), referential inten-
tions and word meanings (M. C. Frank, Goodman, & Tenen-
baum, 2009). Note that the envisioned solutions address
squarely the puzzles mentioned in the introduction: learn-
ing takes place without supervisory signals (the unsuper-
vised/weakly supervised setting), all levels are learned simul-
taneously (joint modeling), and language learning is resilient.

Figure 4. Architecture illustrating a top-down synergy be-
tween learning phonemes and words. Auditory spectrograms
(speech features) are computed from the raw speech sig-
nal. Then, protowords are extracted using Spoken Term Dis-
covery; these words are then used to learn a more invari-
ant speech representation using discriminative learning in a
siamese Deep Neural Network architecture (from Thiolliere
et al., 2015).

This last point can be viewed as a correlate of the soft con-
straint idea: a (reasonable) limitation in some input can be
compensated for by strong priors and/or information coming
from another linguistic or non linguistic level. In brief, even
though unsupervised/weakly supervised learning is difficult,

15Interestingly, the idea of synergies turn the bootstrapping prob-
lem on its head: instead of being a liability, the codependancies
between linguistic components become an asset.
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there is a growing interest within machine learning for the
study of such algorithms. This opens up a window of oppor-
tunity for collaborations between the cognitive science and
machine learning communities.

6 Preliminary results

Achieving the goals of the reverse engineering approach is
a long-term project, requiring us to overcome the challenges
listed in the preceding section. This means that we will have
to contend with partial realizations for many years. Yet, even
partial realizations would provide useful benefits in the area
of cognitive and linguistic theories, corpus studies, exper-
imental studies and machine learning. We illustrate these
benefits next, through a selection of examples in 5 research
areas.

6.1 Challenging intuitions and psychological theories

As discussed above, cognitive theories of the language
learner come under the shape of verbally expressed concep-
tual frameworks, in which inferences and predictions are left
to the interpretations and intuitions of the reader. The re-
verse engineering approach shows that in some cases, effec-
tive implementations of intuitive ideas yield counterintuitive
results. As for specific learning mechanisms that have been
modelled and tested with toy data, implementing and test-
ing them at scale can be useful to assess the effectiveness of
these mechanisms and their relative strength in real life situ-
ations. We briefly illustrate this with three examples. The
first example is the learning of phonetic categories by in-
fant through ’distributional learning’ which can be viewed
as a mechanism of unsupervised clustering. Even though
this mechanism was validated in infants (Maye et al., 2002),
and several implemented algorithms were tested (Vallabha
et al., 2007; McMurray et al., 2009, among others), it ap-
pears that none of these tests were run on real continuous
speech datasets. Most papers used either toy data (points
in formant space generated from a Gaussian distribution), or
worked from measurements made on manually segmented
speech. When tested on continuous speech, clustering algo-
rithms yield a very different result. For instance, Varadarajan,
Khudanpur, and Dupoux (2008) have shown that a clustering
algorithm based on Hidden Markov Models and Gaussian
mixtures does not converge on phonetic segments, but rather,
on much shorter (30 ms), highly context-sensitive acoustic
events. To find phoneme-sized units would seem to require a
different algorithm with strong priors on the temporal struc-
ture of phonemes (Lee & Glass, 2012). This example re-
veals that contrary to the hypothesis in Maye et al. (2002),
finding phonetic units is not only a problem of construct-
ing categories (clustering), it is also a problem of segment-
ing continuous speech. Furthermore, the two problems are
not independent and have therefore to be addressed jointly

by the learning algorithms. This, in turn, would yield spe-
cific predictions to be tested in infants. The second exam-
ple is word segmentation using transition probabilities. Even
though a lot of work has been devoted to study the impor-
tance of transition probabilities as a possibly cue to signal
word boundaries in infants (Romberg & Saffran, 2010, for a
review), it turns out that this cue alone yields disappointingly
poor segmentation performance in a real corpus. In con-
trast, algorithms based on totally different principles which
directly learn a lexicon, and obtain a segmentation as a by-
product fare a lot better (Cristia et al. in preparation). Un-
fortunately, even though such lexical-based algorithms could
potentially be much more useful for language acquisition,
they have been little studied empirically in infants. The third
example relates to the popular hypothesis that the meaning
of words is acquired by infants through the coocurrence pat-
terns of verbal material with contextual cues in other modal-
ities (for instance, the presence of a dog when hearing the
word ’dog’). Yet, Fourtassi and Dupoux (2014) has shown
that it is possible to derive an approximate representation of
the meaning of words without any cross modal information,
through coocurrence patterns within the verbal material it-
self. Counterintuitively, such approximate meaning repre-
sentation can provide useful top-down feedback on how to
cluster phonetic information into phonemes. This shows that
large scale computational models may suggest new types of
Ãă priori implausible but effective mechanisms.

6.2 Grounding formal linguistic theories

Every linguistic theory relies on a core list of represen-
tations and symbols that are supposed universal. For in-
stance, Optimality Theory relies on a list of universal pho-
netic features and constraints. The same goes with syntactic
and semantic theories (part of speech, types of grammatical
relations or computations, quantifiers, etc.). Where do these
symbols come from and how they are grounded in the signal
remains unspecified. Reverse Engineering offers the possi-
bility to give an account of the developmental emergence of
these elements. For instance, in the domain of phonology,
Dunbar, Synnaeve, and Dupoux (2015) has proposed that
phonological features could emerge from a joint auditory and
articulation space. In the domain of lexical semantics, distri-
butional accounts have emerged which ground the meaning
of words into the unsupervised learning of patterns of con-
currence (Landauer & Dumais, 1997). These patterns cor-
relate well with judgments of semantic proximity (although
see Linzen, Dupoux, & Spector, 2016; Gladkova, Drozd,
Center, & Matsuoka, 2016). Similarly, in the domain of
syntax, systems of automatically derived part of speech tags
through unsupervised distributional learning finding work as
well, and on some occasion better than those tags provided
by experts (e.g., Prins & Van Noord, 2001). The potential
consequences of these results for foundational issues in for-
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mal linguistic theories remain to be explored.

6.3 Characterizing the input

Corpus studies characterize the input to the child in terms
of various measures of linguistic complexity (mean length of
utterance, lexical diversity, etc). What reverse engineering
can offer is a new set of tools to quantify linguistic com-
plexity with respect to its effect on the language learner.
We briefly give two examples, one cross linguistic, one that
regards the so-called hyperspeech hypothesis. Regarding
cross-linguistic variation, languages differ in great extent in
the complexity of their surface features. How much do these
variations matter to the learner? This can be explored by
systematically running language learning algorithms through
corpora of different languages. For instance, Fourtassi, Boer-
schinger, Johnson, and Dupoux (2013) have replicated in a
controlled fashion the often noted finding that word segmen-
tation models make a lot more errors in some languages than
others (e.g., Japanese versus English). They showed that the
difference in performance was not specific to the algorithm
that they used, but was related an intrinsic difference in seg-
mentation ambiguity between the two languages, which is
itself based on their differing syllabic structure. Conduct-
ing similar studies cross-linguistically would help to derive a
new learnability-based linguistic typology, which could then
be related to potential cross-linguistic differences in learning
trajectories in infants. As for the hyperspeech hypothesis,
it was proposed that parents adapt their pattern of speech to
infants in order to facilitate learning (see Fernald, 2000 for a
discussion). Consistent with this, Kuhl (1997) observed that
parents tend to increase the separation between point vow-
els in child directed speech, possibly making them more dis-
tinctive. Yet, Ludusan, Seidl, Dupoux, and Cristia (2015)
ran a word discovery algorithm on raw speech and failed to
find any difference in word learning between child and adult
directed speech; if anything, the former was slightly more
difficult. This paradoxical result can be explained by the
fact that parents tend to increase phonetic variability when
addressing their infants, which results in a net decrease in
category discriminability (A. Martin et al., 2015; see also
McMurray, Kovack-Lesh, Goodwin, & McEchron, 2013).
Scalable computational models are therefore useful to assess
the net functional role of otherwise disparate linguistic and
phonetic effects. More topics could be explored following
the same approach. For instance, some studies have pro-
posed that parents provide informative feedback even on pre-
verbal vocalization (Gros-Louis, West, Goldstein, & King,
2006; Plummer, 2012; Warlaumont, Richards, Gilkerson, &
Oller, 2014). A modeling approach would help to deter-
mine whether such behavior truly helps language learning
in a naturalistic environment. The same goes for other forms
of weak parental supervision like referential pointing, joint
attention, etc.

6.4 Errors as predictions

Before a full model of the learner is available, even a par-
tial model would enable to provide useful predictions. For in-
stance, even the best unsupervised segmentation mechanisms
fed with errorless phonemic transcriptions make systematic
errors: under-segmentations for frequent pairs of words (like
"readit" instead of "read"+"it") or over-segmentations (which
would be "butterfly" being segmented into "butter"+"fly")
(see Peters, 1983). Instead of viewing these errors are in-
adequacies of the models, one could view them as reflecting
areas of the target language that are intrinsically difficult to
segment in the absence of other information (syntactic, se-
mantic, etc). Therefore, it is reasonable to expect that infants
would make the same errors, at least at an age where the as-
sumptions of the models are met (after having stabilized their
phonetic representations, but before much semantic/syntactic
learning). These ’errors’ could then be presented into infants
and tested for recognition. If infants are making the same
errors as the proposed mechanism, this would count as evi-
dence in favor of this mechanism. Ngon et al. (2013) tested
the prediction of a very simple model of word segmentation
(an ngram model) run on a CHILDES corpus. Eleven month
olds preferred to listen to some frequent mis-segmentations
of the model, and did not distinguish them from real words
of the same frequency. The logic could be extended by run-
ning different models on the same data, and generating diag-
nostic patterns that distinguish between the competing mod-
els, allowing to separate them empirically. In principle, such
diagnostic patterns could be generated, cross-linguistically,
within a language, or even within a given individual infant (to
the extent that the input data can be collected individually).
The diagnostic pattern technique opens up therefore a whole
arena for comparing implemented models and theories.

6.5 Collaborations with the Machine Learning commu-
nity

As the reverse engineering approach develops cogni-
tive benchmarks, this can provide new playgrounds (prob-
lem sets) for developing architectures and algorithms that
can work with little or no supervision, with a moderate
amount of data. Infants provide a proof of principle that
such systems can be constructed. One example of this
is the zero resource speech challenge (Versteegh et al.,
2015) which explores the unsupervised discovery of sub-
lexical and lexical linguistic units from raw speech. Such
a challenge, set up with open-source datasets and baselines
(see www.zerospeech.com) attracted considerable interest in
the community of speech technology (Versteegh, Anguera,
Jansen, & Dupoux, 2016). Such so-called zero-resource al-
gorithms (Glass, 2012; Jansen, Dupoux, et al., 2013) are not
only interesting models of infant early phonetic and lexical
acquisition, they can also provide technical solutions for the
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Figure 5. The learning situation in the interactive scenario,
viewed as two coupled dynamic systems: the Child and the
Environment.

construction of speech services in languages with scarce lin-
guistic resources, or in languages with no or unreliable or-
thography.

7 Can reverse engineering address the fully interactive
learning scenario?

The feasibility section (Section 5) endorsed a set of sim-
plifying assumptions encapsulated in Figure 2a. This sce-
nario does not take into consideration the child’s output,
nor the possible feedback loops from the parents based on
this output. Many researchers would see this as a major, if
not fatal, limitation of the approach. In real learning situa-
tions, infants are also agents, and the environment reacts to
their outputs creating feedback loops (Bruner, 1975, 1983;
MacWhinney, 1987; Snow, 1972; Tamis-LeMonda & Ro-
driguez, 2008). The most general description of the learning
situation is therefore as in Figure 5. Here, the child is able to
generate observable actions (some linguistic, some not) that
will modify the internal state of the environment (through the
monitoring function). The environment is able to generate
the input to the child as a function of his internal state. In this
most general form, the learning situation consists therefore in
two coupled dynamic systems.16 Could such a complex situ-
ation be addressed within the reverse engineering approach?
We would like to answer with a cautious yes, to the extent
that it is possible to adhere to the same four requirements,
i.e., realistic data (as opposed to simplified ones), explicit
criteria of success (based on cognitive indistinguishability),
scalable modeling (as opposed to verbal theories or toy mod-
els) and sharable resources. While none of these require-
ments seem out of reach, we would like to pinpoint some of
the difficulties, which are the source of our caution. Regard-
ing the data, the interactive scenario would require accessing
the full (linguistic and non linguistic) output of the infant,
not only her input. While this is not intrinsically harder to
collect than the input, and is already been done in many cor-
pora for older children, the issue of what to categorize as

linguistic and non linguistic output and how to annotate it
is not completely trivial. Regarding computational model-
ing, instead of focusing on only one component (the learner)
of one agent (the child), in the full interactive framework,
one has to model two agents (the child and the adult) for a
total of four components (the learner, the infant generator,
the caretaker monitor, and the caretaker generator). Further-
more, the internal states of each agent has to be split into
linguistic states (grammars) and non-linguistic (cognitive)
states to represent the communicative aspects of the inter-
action (e.g., communicative intent, emotional/reinforcement
signals). This, in turn, causes the split of each processing
component into linguistic and cognitive subcomponents. Al-
though this is clearly a difficult endeavor, many of the in-
dividual ingredients needed for constructing such a system
are already available in the following research areas. First,
within speech technology, there are available components to
build a language generator, as well as the perception and
comprehension components in the adult caretaker. Second,
within linguistics, psycholinguistics and neuroscience, there
are interesting theoretical models of the learning of speech
production and articulation in young children (Tomasello,
2003; W. Johnson & Reimers, 2010; Guenther & Vladu-
sich, 2012). Third, within machine learning, great progress
has been made recently on reinforcement learning, a power-
ful class of learning algorithms which assume that besides
raw sensory data, the environment only provides sporadic
positive or negative feedback (Sutton & Barto, 1998). This
could be adapted to model the effect of the feedback loops
on the learning components of the caretaker and the infant.
Fourth, developmental robotics studies have developed the
notion of intrinsic motivation, where the agent actively seek
new information by being reinforced by its own learning rate
(Oudeyer, Kaplan, & Hafner, 2007). This notion could be
used to model the dynamics of learning in the child, and the
adaptive effects of the caretaker-child feedback loops. The
most difficult part of this enterprise would perhaps concern
the evaluation of the models. Indeed, each of these new com-
ponents and subcomponents would have to be evaluated on
their own in the same spirit as before, i.e., by running them on
scalable data and testing them using human-validated tasks.
For instance, the child language generator should be tested
by comparing its output to age appropriate children’s out-
puts, which requires the development of appropriate metrics
(sentence length, complexity, etc) or human judgments. The
cognitive subcomponents would have to be tested against
experiments studying children and adults in experimentally
controlled interactive loops (e.g., N. A. Smith & Trainor,
2008; Goldstein, 2008). In addition, because a complex sys-
tem is more than the sum of its parts, individual component
validation would not sufficient, and the entire system would

16We thank Thomas Schatz, personal communication, for
proposing this general formulation.
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have to be evaluated.17 Fully specifying the methodological
requirements for the reverse engineering of the interactive
scenario would be a project of its own. It is not clear at
present how much of the complications introduced by this
scenario are necessary, at least to understand the first steps of
language bootstrapping. To the extent that there are cultures
where the direct input to the child is severely limited and/or
the interactive character of that input circumscribed, it would
seem that a fair amount of bootstrap can take place outside
of interactive feedback loops. This is of course entirely an
empirical issue, one that the reverse engineering approach
should help to clarify.

8 Conclusion

During their first years of life, infants learn a vast array
of cognitive competences at an amazing speed; studying this
development is a major scientific challenge for cognitive sci-
ence in that it requires the cooperation of a wide variety of
approaches and methods. Here, we proposed to add to the
existing arsenal of experimental and theoretical methods the
reverse engineering approach, which consists in building an
effective system that mimics infant’s achievements. The idea
of constructing an effective system that mimics an object in
order to gain more knowledge about that object is of course a
very general one, which can be applied beyond language (for
instance, in the modeling of the acquisition of naive physics
or naive psychology) and even beyond development. Related
work exist in the area of computational neuroscience, which
attempts to use machine learning architectures (deep learn-
ing) and bring it to bear to the analysis of neural representa-
tions for visual inputs (Cadieu et al., 2014; Isik, Tacchetti, &
Poggio, 2016; Leibo, Liao, Anselmi, & Poggio, 2015). The
computational rationality framework uses bayesian model-
ing to bring together the field of Artificial Intelligence and
studies of human abilities like reasoning or decision mak-
ing (Gershman, Horvitz, & Tenenbaum, 2015). Returning
to language acquisition, we have defined four methodolog-
ical requirements for this combined approach to work: us-
ing realistic data as input (which implies setting up sharable
and privately safe repositories of dense reconstructions of the
sensory experience of many infants), constructing a com-
putational system at scale (which implies ’de-supervising’
machine learning systems and turning them into models of
infant learning), assessing success by running tests derived
from linguistics on both humans and machines (which im-
plies setting up cumulative benchmarks of cognitive and lin-
guistic tests) and sharing all of these resources. We’ve ar-
gued that even before the challenges are all met, such an ap-
proach can help to understand how language bootstrap can
take place in a resilient fashion, and can provide an effec-
tive way to derive quantitative predictions that are of interest
both practically and theoretically. The reverse engineering
approach we propose does not endorse a particular model,

theory or view of language acquisition. For instance, it does
not take a position on the rationalist versus empiricist debate
(e.g., Chomsky, 1965, vs. Harman, 1967). Our proposal is
more of a methodological one: it specifies what needs to be
done such that the machine learning tools can be used to ad-
dress scientific questions that are relevant for such a debate.
It strives at constructing at least one effective model that can
learn language. Any such model will both have an initial ar-
chitecture (nature), and feed on real data (nurture). It is only
through the comparison of several such models that it will
be possible to assess the minimal amount of information that
the initial architecture has to have, in order to perform well.
Such a comparison would give a quantitative estimate of the
number of bits required in the genome to construct this archi-
tecture, and therefore the relative weight of these two sources
of information. In other words, our roadmap does not start
off with a given position on the rationalist/empiricist debate,
rather, a position in this debate will be an outcome of this
enterprise.
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Abstract

The success of long short-term memory
(LSTM) neural networks in language process-
ing is typically attributed to their ability to
capture long-distance statistical regularities.
Linguistic regularities are often sensitive to
syntactic structure; can such dependencies be
captured by LSTMs, which do not have ex-
plicit structural representations? We begin ad-
dressing this question using number agreement
in English subject-verb dependencies. We
probe the architecture’s grammatical compe-
tence both using training objectives with an
explicit grammatical target (number prediction,
grammaticality judgments) and using language
models. In the strongly supervised settings,
the LSTM achieved very high overall accu-
racy (less than 1% errors), but errors increased
when sequential and structural information con-
flicted. The frequency of such errors rose
sharply in the language-modeling setting. We
conclude that LSTMs can capture a non-trivial
amount of grammatical structure given targeted
supervision, but stronger architectures may be
required to further reduce errors; furthermore,
the language modeling signal is insufficient
for capturing syntax-sensitive dependencies,
and should be supplemented with more direct
supervision if such dependencies need to be
captured.

1 Introduction

Recurrent neural networks (RNNs) are highly effec-
tive models of sequential data (Elman, 1990). The
rapid adoption of RNNs in NLP systems in recent
years, in particular of RNNs with gating mecha-
nisms such as long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997) or gated recur-
rent units (GRU) (Cho et al., 2014), has led to sig-
nificant gains in language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016; Dyer
et al., 2016), machine translation (Bahdanau et al.,
2015) and other tasks.

The effectiveness of RNNs1 is attributed to their
ability to capture statistical contingencies that may
span an arbitrary number of words. The word France,
for example, is more likely to occur somewhere in
a sentence that begins with Paris than in a sentence
that begins with Penguins. The fact that an arbitrary
number of words can intervene between the mutually
predictive words implies that they cannot be captured
by models with a fixed window such as n-gram mod-
els, but can in principle be captured by RNNs, which
do not have an architecturally fixed limit on depen-
dency length.

RNNs are sequence models: they do not explicitly
incorporate syntactic structure. Indeed, many word
co-occurrence statistics can be captured by treating
the sentence as an unstructured list of words (Paris-
France); it is therefore unsurprising that RNNs can
learn them well. Other dependencies, however, are
sensitive to the syntactic structure of the sentence
(Chomsky, 1965; Everaert et al., 2015). To what
extent can RNNs learn to model such phenomena
based only on sequential cues?

Previous research has shown that RNNs (in particu-
lar LSTMs) can learn artificial context-free languages
(Gers and Schmidhuber, 2001) as well as nesting and

1In this work we use the term RNN to refer to the entire
class of sequential recurrent neural networks. Instances of the
class include long short-term memory networks (LSTM) and the
Simple Recurrent Network (SRN) due to Elman (1990).
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indentation in a programming language (Karpathy et
al., 2016). The goal of the present work is to probe
their ability to learn natural language hierarchical
(syntactic) structures from a corpus without syntactic
annotations. As a first step, we focus on a particular
dependency that is commonly regarded as evidence
for hierarchical structure in human language: English
subject-verb agreement, the phenomenon in which
the form of a verb depends on whether the subject
is singular or plural (the kids play but the kid plays;
see additional details in Section 2). If an RNN-based
model succeeded in learning this dependency, that
would indicate that it can learn to approximate or
even faithfully implement syntactic structure.

Our main interest is in whether LSTMs have the
capacity to learn structural dependencies from a nat-
ural corpus. We therefore begin by addressing this
question under the most favorable conditions: train-
ing with explicit supervision. In the setting with the
strongest supervision, which we refer to as the num-
ber prediction task, we train it directly on the task of
guessing the number of a verb based on the words that
preceded it (Sections 3 and 4). We further experiment
with a grammaticality judgment training objective, in
which we provide the model with full sentences an-
notated as to whether or not they violate subject-verb
number agreement, without an indication of the locus
of the violation (Section 5). Finally, we trained the
model without any grammatical supervision, using
a language modeling objective (predicting the next
word).

Our quantitative results (Section 4) and qualitative
analysis (Section 7) indicate that most naturally oc-
curring agreement cases in the Wikipedia corpus are
easy: they can be resolved without syntactic informa-
tion, based only on the sequence of nouns preceding
the verb. This leads to high overall accuracy in all
models. Most of our experiments focus on the super-
vised number prediction model. The accuracy of this
model was lower on harder cases, which require the
model to encode or approximate structural informa-
tion; nevertheless, it succeeded in recovering the ma-
jority of agreement cases even when four nouns of the
opposite number intervened between the subject and
the verb (17% errors). Baseline models failed spec-
tacularly on these hard cases, performing far below
chance levels. Fine-grained analysis revealed that
mistakes are much more common when no overt cues

to syntactic structure (in particular function words)
are available, as is the case in noun-noun compounds
and reduced relative clauses. This indicates that the
number prediction model indeed managed to capture
a decent amount of syntactic knowledge, but was
overly reliant on function words.

Error rates increased only mildly when we
switched to more indirect supervision consisting only
of sentence-level grammaticality annotations without
an indication of the crucial verb. By contrast, the
language model trained without explicit grammati-
cal supervision performed worse than chance on the
harder agreement prediction cases. Even a state-of-
the-art large-scale language model (Jozefowicz et
al., 2016) was highly sensitive to recent but struc-
turally irrelevant nouns, making more than five times
as many mistakes as the number prediction model on
these harder cases. These results suggest that explicit
supervision is necessary for learning the agreement
dependency using this architecture, limiting its plau-
sibility as a model of child language acquisition (El-
man, 1990). From a more applied perspective, this
result suggests that for tasks in which it is desirable to
capture syntactic dependencies (e.g., machine trans-
lation or language generation), language modeling
objectives should be supplemented by supervision
signals that directly capture the desired behavior.

2 Background: Subject-Verb Agreement
as Evidence for Syntactic Structure

The form of an English third-person present tense
verb depends on whether the head of the syntactic
subject is plural or singular:2

(1) a. The key is on the table.
b. *The key are on the table.
c. *The keys is on the table.
d. The keys are on the table.

While in these examples the subject’s head is adjacent
to the verb, in general the two can be separated by
some sentential material:3

2 Identifying the head of the subject is typically straightfor-
ward. In what follows we will use the shorthand “the subject” to
refer to the head of the subject.

3In the examples, the subject and the corresponding verb
are marked in boldface, agreement attractors are underlined and
intervening nouns of the same number as the subject are marked
in italics. Asterisks mark unacceptable sentences.

522



(2) The keys to the cabinet are on the table.

Given a syntactic parse of the sentence and a verb, it
is straightforward to identify the head of the subject
that corresponds to that verb, and use that information
to determine the number of the verb (Figure 1).

The keys to the cabinet are on the table

det

nsubj

prep det
pobj

prep det
pobj

root

Figure 1: The form of the verb is determined by
the head of the subject, which is directly connected
to it via an nsubj edge. Other nouns that intervene
between the head of the subject and the verb (here
cabinet is such a noun) are irrelevant for determining
the form of the verb and need to be ignored.

By contrast, models that are insensitive to structure
may run into substantial difficulties capturing this de-
pendency. One potential issue is that there is no limit
to the complexity of the subject NP, and any number
of sentence-level modifiers and parentheticals—and
therefore an arbitrary number of words—can appear
between the subject and the verb:

(3) The building on the far right that’s quite old
and run down is the Kilgore Bank Building.

This property of the dependency entails that it can-
not be captured by an n-gram model with a fixed n.
RNNs are in principle able to capture dependencies
of an unbounded length; however, it is an empirical
question whether or not they will learn to do so in
practice when trained on a natural corpus.

A more fundamental challenge that the depen-
dency poses for structure-insensitive models is the
possibility of agreement attraction errors (Bock and
Miller, 1991). The correct form in (3) could be se-
lected using simple heuristics such as “agree with
the most recent noun”, which are readily available to
sequence models. In general, however, such heuris-
tics are unreliable, since other nouns can intervene
between the subject and the verb in the linear se-
quence of the sentence. Those intervening nouns can
have the same number as the subject, as in (4), or the
opposite number as in (5)-(7):

(4) Alluvial soils carried in the floodwaters add
nutrients to the floodplains.

(5) The only championship banners that are cur-
rently displayed within the building are for
national or NCAA Championships.

(6) The length of the forewings is 12-13.

(7) Yet the ratio of men who survive to the
women and children who survive is not clear
in this story.

Intervening nouns with the opposite number from the
subject are called agreement attractors. The poten-
tial presence of agreement attractors entails that the
model must identify the head of the syntactic subject
that corresponds to a given verb in order to choose
the correct inflected form of that verb.

Given the difficulty in identifying the subject from
the linear sequence of the sentence, dependencies
such as subject-verb agreement serve as an argument
for structured syntactic representations in humans
(Everaert et al., 2015); they may challenge models
such as RNNs that do not have pre-wired syntac-
tic representations. We note that subject-verb num-
ber agreement is only one of a number of structure-
sensitive dependencies; other examples include nega-
tive polarity items (e.g., any) and reflexive pronouns
(herself ). Nonetheless, a model’s success in learning
subject-verb agreement would be highly suggestive
of its ability to master hierarchical structure.

3 The Number Prediction Task

To what extent can a sequence model learn to be sensi-
tive to the hierarchical structure of natural language?
To study this question, we propose the number pre-
diction task. In this task, the model sees the sentence
up to but not including a present-tense verb, e.g.:

(8) The keys to the cabinet

It then needs to guess the number of the following
verb (a binary choice, either PLURAL or SINGULAR).
We examine variations on this task in Section 5.

In order to perform well on this task, the model
needs to encode the concepts of syntactic number
and syntactic subjecthood: it needs to learn that some
words are singular and others are plural, and to be
able to identify the correct subject. As we have illus-
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trated in Section 2, correctly identifying the subject
that corresponds to a particular verb often requires
sensitivity to hierarchical syntax.

Data: An appealing property of the number predic-
tion task is that we can generate practically unlimited
training and testing examples for this task by query-
ing a corpus for sentences with present-tense verbs,
and noting the number of the verb. Importantly, we
do not need to correctly identify the subject in order
to create a training or test example. We generated a
corpus of ∼1.35 million number prediction problems
based on Wikipedia, of which ∼121,500 (9%) were
used for training, ∼13,500 (1%) for validation, and
the remaining ∼1.21 million (90%) were reserved
for testing.4 The large number of test sentences was
necessary to ensure that we had a good variety of test
sentences representing less common constructions
(see Section 4).5

Model and baselines: We encode words as one-
hot vectors: the model does not have access to the
characters that make up the word. Those vectors are
then embedded into a 50-dimensional vector space.
An LSTM with 50 hidden units reads those embed-
ding vectors in sequence; the state of the LSTM at
the end of the sequence is then fed into a logistic
regression classifier. The network is trained6 in an
end-to-end fashion, including the word embeddings.7

To isolate the effect of syntactic structure, we also
consider a baseline which is exposed only to the
nouns in the sentence, in the order in which they
appeared originally, and is then asked to predict the
number of the following verb. The goal of this base-

4We limited our search to sentences that were shorter than
50 words. Whenever a sentence had more than one subject-verb
dependency, we selected one of the dependencies at random.

5Code and data are available at http://tallinzen.
net/projects/lstm_agreement.

6The network was optimized using Adam (Kingma and Ba,
2015) and early stopping based on validation set error. We
trained the number prediction model 20 times with different
random initializations, and report accuracy averaged across all
runs. The models described in Sections 5 and 6 are based on 10
runs, with the exception of the language model, which is slower
to train and was trained once.

7The size of the vocabulary was capped at 10000 (after low-
ercasing). Infrequent words were replaced with their part of
speech (Penn Treebank tagset, which explicitly encodes number
distinctions); this was the case for 9.6% of all tokens and 7.1%
of the subjects.

line is to withhold the syntactic information carried
by function words, verbs and other parts of speech.
We explore two variations on this baseline: one that
only receives common nouns (dogs, pipe), and an-
other that also receives pronouns (he) and proper
nouns (France). We refer to these as the noun-only
baselines.

4 Number Prediction Results

Overall accuracy: Accuracy was very high over-
all: the system made an incorrect number prediction
only in 0.83% of the dependencies. The noun-only
baselines performed significantly worse: 4.2% errors
for the common-nouns case and 4.5% errors for the
all-nouns case. This suggests that function words,
verbs and other syntactically informative elements
play an important role in the model’s ability to cor-
rectly predict the verb’s number. However, while the
noun-only baselines made more than four times as
many mistakes as the number prediction system, their
still-low absolute error rate indicates that around 95%
of agreement dependencies can be captured based
solely on the sequence of nouns preceding the verb.
This is perhaps unsurprising: sentences are often
short and the verb is often directly adjacent to the sub-
ject, making the identification of the subject simple.
To gain deeper insight into the syntactic capabilities
of the model, then, the rest of this section investigates
its performance on more challenging dependencies.8

Distance: We first examine whether the network
shows evidence of generalizing to dependencies
where the subject and the verb are far apart. We focus
in this analysis on simpler cases where no nouns in-
tervened between the subject and the verb. As Figure
2a shows, performance did not degrade considerably
when the distance between the subject and the verb
grew up to 15 words (there were very few longer
dependencies). This indicates that the network gen-
eralized the dependency from the common distances
of 0 and 1 to rare distances of 10 and more.

Agreement attractors: We next examine how the
model’s error rate was affected by nouns that inter-
vened between the subject and the verb in the linear

8These properties of the dependencies were identified by
parsing the test sentences using the parser described in Goldberg
and Nivre (2012).
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Figure 2: (a-d) Error rates of the LSTM number prediction model as a function of: (a) distance between
the subject and the verb, in dependencies that have no intervening nouns; (b) presence and number of last
intervening noun; (c) count of attractors in dependencies with homogeneous intervention; (d) presence of
a relative clause with and without an overt relativizer in dependencies with homogeneous intervention and
exactly one attractor. All error bars represent 95% binomial confidence intervals.

(e-f) Additional plots: (e) count of attractors per dependency in the corpus (note that the y-axis is on a log
scale); (f) embeddings of singular and plural nouns, projected onto their first two principal components.

order of the sentence. We first focus on whether or
not there were any intervening nouns, and if there
were, whether the number of the subject differed
from the number of the last intervening noun—the
type of noun that would trip up the simple heuristic
of agreeing with the most recent noun.

As Figure 2b shows, a last intervening noun of the
same number as the subject increased error rates only
moderately, from 0.4% to 0.7% in singular subjects
and from 1% to 1.4% in plural subjects. On the other
hand, when the last intervening noun was an agree-
ment attractor, error rates increased by almost an
order of magnitude (to 6.5% and 5.4% respectively).
Note, however, that even an error rate of 6.5% is
quite impressive considering uninformed strategies
such as random guessing (50% error rate), always
assigning the more common class label (32% error
rate, since 32% of the subjects in our corpus are plu-
ral) and the number-of-most-recent-noun heuristic
(100% error rate). The noun-only LSTM baselines
performed much worse in agreement attraction cases,
with error rates of 46.4% (common nouns) and 40%
(all nouns).

We next tested whether the effect of attractors is
cumulative, by focusing on dependencies with multi-
ple attractors. To avoid cases in which the effect of
an attractor is offset by an intervening noun with the
same number as the subject, we restricted our search
to dependencies in which all of the intervening nouns
had the same number, which we term dependencies
with homogeneous intervention. For example, (9) has
homogeneous intervention whereas (10) does not:

(9) The roses in the vase by the door are red.

(10) The roses in the vase by the chairs are red.

Figure 2c shows that error rates increased gradually
as more attractors intervened between the subject and
the verb. Performance degraded quite slowly, how-
ever: even with four attractors the error rate was only
17.6%. As expected, the noun-only baselines per-
formed significantly worse in this setting, reaching
an error rate of up to 84% (worse than chance) in the
case of four attractors. This confirms that syntactic
cues are critical for solving the harder cases.
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Relative clauses: We now look in greater detail
into the network’s performance when the words that
intervened between the subject and verb contained
a relative clause. Relative clauses with attractors
are likely to be fairly challenging, for several rea-
sons. They typically contain a verb that agrees with
the attractor, reinforcing the misleading cue to noun
number. The attractor is often itself a subject of an
irrelevant verb, making a potential “agree with the
most recent subject” strategy unreliable. Finally, the
existence of a relative clause is sometimes not overtly
indicated by a function word (relativizer), as in (11)
(for comparison, see the minimally different (12)):

(11) The landmarks this article lists here are
also run-of-the-mill and not notable.

(12) The landmarks that this article lists here
are also run-of-the-mill and not notable.

For data sparsity reasons we restricted our attention
to dependencies with a single attractor and no other
intervening nouns. As Figure 2d shows, attraction
errors were more frequent in dependencies with an
overt relative clause (9.9% errors) than in dependen-
cies without a relative clause (3.2%), and consider-
ably more frequent when the relative clause was not
introduced by an overt relativizer (25%). As in the
case of multiple attractors, however, while the model
struggled with the more difficult dependencies, its
performance was much better than random guessing,
and slightly better than a majority-class strategy.

Word representations: We explored the 50-
dimensional word representations acquired by the
model by performing a principal component anal-
ysis. We assigned a part-of-speech (POS) to each
word based on the word’s most common POS in the
corpus. We only considered relatively unambiguous
words, in which a single POS accounted for more
than 90% of the word’s occurrences in the corpus.
Figure 2f shows that the first principal component
corresponded almost perfectly to the expected num-
ber of the noun, suggesting that the model learned
the number of specific words very well; recall that
the model did not have access during training to noun
number annotations or to morphological suffixes such
as -s that could be used to identify plurals.

Visualizing the network’s activations: We start
investigating the inner workings of the number pre-
diction network by analyzing its activation in re-
sponse to particular syntactic constructions. To sim-
plify the analysis, we deviate from our practice in the
rest of this paper and use constructed sentences.

We first constructed sets of sentence prefixes based
on the following patterns:

(13) PP: The toy(s) of the boy(s)...

(14) RC: The toy(s) that the boy(s)...

These patterns differ by exactly one function word,
which determines the type of the modifier of the main
clause subject: a prepositional phrase (PP) in the first
sentence and a relative clause (RC) in the second. In
PP sentences the correct number of the upcoming
verb is determined by the main clause subject toy(s);
in RC sentences it is determined by the embedded
subject boy(s).

We generated all four versions of each pattern, and
repeated the process ten times with different lexical
items (the house(s) of/that the girl(s), the computer(s)
of/that the student(s), etc.), for a total of 80 sentences.
The network made correct number predictions for all
40 PP sentences, but made three errors in RC sen-
tences. We averaged the word-by-word activations
across all sets of ten sentences that had the same com-
bination of modifier (PP or RC), first noun number
and second noun number. Plots of the activation of
all 50 units are provided in the Appendix (Figure
5). Figure 3a highlights a unit (Unit 1) that shows a
particularly clear pattern: it tracks the number of the
main clause subject throughout the PP modifier; by
contrast, it resets when it reaches the relativizer that
which introduces the RC modifier, and then switches
to tracking the number of the embedded subject.

To explore how the network deals with dependen-
cies spanning a larger number of words, we tracked
its activation during the processing of the following
two sentences:9

(15) The houses of/that the man from the office
across the street...

The network made the correct prediction for the PP
9We simplified this experiment in light of the relative robust-

ness of the first experiment to lexical items and to whether each
of the nouns was singular or plural.
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Figure 3: Word-by-word visualization of LSTM activation: (a) a unit that correctly predicts the number of an
upcoming verb. This number is determined by the first noun (X) when the modifier is a prepositional phrase
(PP) and by the second noun (Y) when it is an object relative clause (RC); (b) the evolution of the predictions
in the case of a longer modifier: the predictions correctly diverge at the embedded noun, but then incorrectly
converge again; (c) the activation of four representative units over the course of the same sentences.

but not the RC sentence (as before, the correct pre-
dictions are PLURAL for PP and SINGULAR for RC).
Figure 3b shows that the network begins by mak-
ing the correct prediction for RC immediately after
that, but then falters: as the sentence goes on, the
resetting effect of that diminishes. The activation
time courses shown in Figure 3c illustrate that Unit 1,
which identified the subject correctly when the prefix
was short, gradually forgets that it is in an embedded
clause as the prefix grows longer. By contrast, Unit
0 shows a stable capacity to remember the current
embedding status. Additional representative units
shown in Figure 3c are Unit 46, which consistently
stores the number of the main clause subject, and
Unit 27, which tracks the number of the most recent
noun, resetting at noun phrase boundaries.

While the interpretability of these patterns is en-
couraging, our analysis only scratches the surface
of the rich possibilities of a linguistically-informed
analysis of a neural network trained to perform a
syntax-sensitive task; we leave a more extensive in-
vestigation for future work.

5 Alternative Training Objectives

The number prediction task followed a fully super-
vised objective, in which the network identifies the
number of an upcoming verb based only on the words
preceding the verb. This section proposes three objec-
tives that modify some of the goals and assumptions
of the number prediction objective (see Table 1 for
an overview).

Verb inflection: This objective is similar to num-
ber prediction, with one difference: the network re-
ceives not only the words leading up to the verb,
but also the singular form of the upcoming verb (e.g.,
writes). In practice, then, the network needs to decide
between the singular and plural forms of a particular
verb (writes or write). Having access to the semantics
of the verb can help the network identify the noun
that serves as its subject without using the syntactic
subjecthood criteria. For example, in the following
sentence:

(16) People from the capital often eat pizza.
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Training objective Sample input Training signal Prediction task Correct answer

Number prediction The keys to the cabinet PLURAL SINGULAR/PLURAL? PLURAL

Verb inflection The keys to the cabinet [is/are] PLURAL SINGULAR/PLURAL? PLURAL

Grammaticality The keys to the cabinet are here. GRAMMATICAL GRAMMATICAL/UNGRAMMATICAL? GRAMMATICAL

Language model The keys to the cabinet are P (are) > P (is)? True

Table 1: Examples of the four training objectives and corresponding prediction tasks.

only people is a plausible subject for eat; the network
can use this information to infer that the correct form
of the verb is eat is rather than eats.

This objective is similar to the task that humans
face during language production: after the speaker
has decided to use a particular verb (e.g., write), he
or she needs to decide whether its form will be write
or writes (Levelt et al., 1999; Staub, 2009).

Grammaticality judgments: The previous objec-
tives explicitly indicate the location in the sentence in
which a verb can appear, giving the network a cue to
syntactic clause boundaries. They also explicitly di-
rect the network’s attention to the number of the verb.
As a form of weaker supervision, we experimented
with a grammaticality judgment objective. In this
scenario, the network is given a complete sentence,
and is asked to judge whether or not it is grammatical.

To train the network, we made half of the examples
in our training corpus ungrammatical by flipping the
number of the verb.10 The network read the entire
sentence and received a supervision signal at the end.
This task is modeled after a common human data col-
lection technique in linguistics (Schütze, 1996), al-
though our training regime is of course very different
to the training that humans are exposed to: humans
rarely receive ungrammatical sentences labeled as
such (Bowerman, 1988).

Language modeling (LM): Finally, we experi-
mented with a word prediction objective, in which
the model did not receive any grammatically relevant
supervision (Elman, 1990; Elman, 1991). In this sce-
nario, the goal of the network is to predict the next
word at each point in every sentence. It receives un-

10In some sentences this will not in fact result in an ungram-
matical sentence, e.g. with collective nouns such as group, which
are compatible with both singular and plural verbs in some di-
alects of English (Huddleston and Pullum, 2002); those cases
appear to be rare.

labeled sentences and is not specifically instructed to
attend to the number of the verb. In the network that
implements this training scenario, RNN activation
after each word is fed into a fully connected dense
layer followed by a softmax layer over the entire
vocabulary.

We evaluate the knowledge that the network has
acquired about subject-verb noun agreement using
a task similar to the verb inflection task. To per-
form the task, we compare the probabilities that the
model assigns to the two forms of the verb that in
fact occurred in the corpus (e.g., write and writes),
and select the form with the higher probability.11 As
this task is not part of the network’s training objec-
tive, and the model needs to allocate considerable
resources to predicting each word in the sentence, we
expect the LM to perform worse than the explicitly
supervised objectives.

Results: When considering all agreement depen-
dencies, all models achieved error rates below 7%
(Figure 4a); as mentioned above, even the noun-only
number prediction baselines achieved error rates be-
low 5% on this task. At the same time, there were
large differences in accuracy across training objec-
tives. The verb inflection network performed slightly
but significantly better than the number prediction
one (0.8% compared to 0.83% errors), suggesting
that the semantic information carried by the verb is
moderately helpful. The grammaticality judgment
objective performed somewhat worse, at 2.5% errors,
but still outperformed the noun-only baselines by a
large margin, showing the capacity of the LSTM ar-
chitecture to learn syntactic dependencies even given
fairly indirect evidence.

11One could also imagine performing the equivalent of the
number prediction task by aggregating LM probability mass over
all plural verbs and all singular verbs. This approach may be
more severely affected by part-of-speech ambiguous words than
the one we adopted; we leave the exploration of this approach to
future work.
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Figure 4: Alternative tasks and additional experiments: (a) overall error rate across tasks (note that the y-axis
ends in 10%); (b) effect of count of attractors in homogeneous dependencies across training objectives; (c)
comparison of the Google LM (Jozefowicz et al., 2016) to our LM and one of our supervised verb inflection
systems, on a sample of sentences; (d) number prediction: effect of count of attractors using SRNs with
standard training or LSTM with targeted training; (e) number prediction: difference in error rate between
singular and plural subjects across RNN cell types. Error bars represent binomial 95% confidence intervals.

The worst performer was the language model. It
made eight times as many errors as the original num-
ber prediction network (6.78% compared to 0.83%),
and did substantially worse than the noun-only base-
lines (though recall that the noun-only baselines were
still explicitly trained to predict verb number).

The differences across the networks are more strik-
ing when we focus on dependencies with agreement
attractors (Figure 4b). Here, the language model
does worse than chance in the most difficult cases,
and only slightly better than the noun-only baselines.
The worse-than-chance performance suggests that
attractors actively confuse the networks rather than
cause them to make a random decision. The other
models degrade more gracefully with the number
of agreement attractors; overall, the grammaticality
judgment objective is somewhat more difficult than
the number prediction and verb inflection ones. In
summary, we conclude that while the LSTM is capa-
ble of learning syntax-sensitive agreement dependen-
cies under various objectives, the language-modeling
objective alone is not sufficient for learning such de-

pendencies, and a more direct form of training signal
is required.

Comparison to a large-scale language model:
One objection to our language modeling result is
that our LM faced a much harder objective than
our other models—predicting a distribution over
10,000 vocabulary items is certainly harder than bi-
nary classification—but was equipped with the same
capacity (50-dimensional hidden state and word vec-
tors). Would the performance gap between the LM
and the explicitly supervised models close if we in-
creased the capacity of the LM?

We address this question using a very large pub-
licly available LM (Jozefowicz et al., 2016), which
we refer to as the Google LM.12 The Google LM rep-
resents the current state-of-the-art in language mod-
eling: it is trained on a billion-word corpus (Chelba
et al., 2013), with a vocabulary of 800,000 words.
It is based on a two-layer LSTM with 8192 units in
each layer, or more than 300 times as many units

12 https://github.com/tensorflow/models/
tree/master/lm_1b
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as our LM; at 1.04 billion parameters it has almost
2000 times as many parameters. It is a fine-tuned
language model that achieves impressive perplexity
scores on common benchmarks, requires a massive
infrastructure for training, and pushes the boundaries
of what’s feasible with current hardware.

We tested the Google LM with the methodology
we used to test ours.13 Due to computational resource
limitations, we did not evaluate it on the entire test
set, but sampled a random selection of 500 sentences
for each count of attractors (testing a single sentence
under the Google LM takes around 5 seconds on
average). The results are presented in Figure 4c,
where they are compared to the performance of the
supervised verb inflection system. Despite having an
order of magnitude more parameters and significantly
larger training data, the Google LM performed poorly
compared to the supervised models; even a single
attractor led to a sharp increase in error rate to 28.5%,
almost as high as our small-scale LM (32.6% on the
same sentences). While additional attractors caused
milder degradation than in our LM, the performance
of the Google LM on sentences with four attractors
was still worse than always guessing the majority
class (SINGULAR).

In summary, our experiments with the Google LM
do not change our conclusions: the contrast between
the poor performance of the LMs and the strong per-
formance of the explicitly supervised objectives sug-
gests that direct supervision has a dramatic effect
on the model’s ability to learn syntax-sensitive de-
pendencies. Given that the Google LM was already
trained on several hundred times more data than the
number prediction system, it appears unlikely that
its relatively poor performance was due to lack of
training data.

6 Additional Experiments

Comparison to simple recurrent networks:
How much of the success of the network is due to
the LSTM cells? We repeated the number prediction
experiment with a simple recurrent network (SRN)
(Elman, 1990), with the same number of hidden
units. The SRN’s performance was inferior to the

13One technical exception was that we did not replace low-
frequency words with their part-of-speech, since the Google
LM is a large-vocabulary language model, and does not have
parts-of-speech as part of its vocabulary.

LSTM’s, but the average performance for a given
number of agreement attractors does not suggest a
qualitative difference between the cell types: the
SRN makes about twice as many errors as the LSTM
across the board (Figure 4d).

Training only on difficult dependencies: Only a
small proportion of the dependencies in the corpus
had agreement attractors (Figure 2e). Would the
network generalize better if dependencies with in-
tervening nouns were emphasized during training?
We repeated our number prediction experiment, this
time training the model only on dependencies with
at least one intervening noun (of any number). We
doubled the proportion of training sentences to 20%,
since the total size of the corpus was smaller (226K
dependencies).

This training regime resulted in a 27% decrease in
error rate on dependencies with exactly one attractor
(from 4.1% to 3.0%). This decrease is statistically sig-
nificant, and encouraging given that the total number
of dependencies in training was much lower, which
complicates the learning of word embeddings. Error
rates mildly decreased in dependencies with more
attractors as well, suggesting some generalization
(Figure 4d). Surprisingly, a similar experiment us-
ing the grammaticality judgment task led to a slight
increase in error rate. While tentative at this point,
these results suggest that oversampling difficult train-
ing cases may be beneficial; a curriculum progressing
from easier to harder dependencies (Elman, 1993)
may provide additional gains.

7 Error Analysis

Singular vs. plural subjects: Most of the nouns
in English are singular: in our corpus, the fraction
of singular subjects is 68%. Agreement attraction
errors in humans are much more common when the
attractor is plural than when it is singular (Bock and
Miller, 1991; Eberhard et al., 2005). Do our models’
error rates depend on the number of the subject?

As Figure 2b shows, our LSTM number prediction
model makes somewhat more agreement attraction
errors with plural than with singular attractors; the
difference is statistically significant, but the asymme-
try is much less pronounced than in humans. Inter-
estingly, the SRN version of the model does show a
large asymmetry, especially as the count of attractors
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increases; with four plural attractors the error rate
reaches 60% (Figure 4e).

Qualitative analysis: We manually examined a
sample of 200 cases in which the majority of the
20 runs of the number prediction network made the
wrong prediction. There were only 8890 such depen-
dencies (about 0.6%). Many of those were straight-
forward agreement attraction errors; others were dif-
ficult to interpret. We mention here three classes of
errors that can motivate future experiments.

The networks often misidentified the heads of
noun-noun compounds. In (17), for example, the
models predict a singular verb even though the num-
ber of the subject conservation refugees should be
determined by its head refugees. This suggests that
the networks didn’t master the structure of English
noun-noun compounds.14

(17) Conservation refugees live in a world col-
ored in shades of gray; limbo.

(18) Information technology (IT) assets com-
monly hold large volumes of confidential
data.

Some verbs that are ambiguous with plural nouns
seem to have been misanalyzed as plural nouns and
consequently act as attractors. The models predicted
a plural verb in the following two sentences even
though neither of them has any plural nouns, possibly
because of the ambiguous verbs drives and lands:

(19) The ship that the player drives has a very
high speed.

(20) It was also to be used to learn if the area
where the lander lands is typical of the sur-
rounding terrain.

Other errors appear to be due to difficulty not in
identifying the subject but in determining whether it
is plural or singular. In Example (22), in particular,
there is very little information in the left context of
the subject 5 paragraphs suggesting that the writer
considers it to be singular:

14The dependencies are presented as they appeared in the
corpus; the predicted number was the opposite of the correct one
(e.g., singular in (17), where the original is plural).

(21) Rabaul-based Japanese aircraft make three
dive-bombing attacks.

(22) The lead is also rather long; 5 paragraphs
is pretty lengthy for a 62 kilobyte article.

The last errors point to a limitation of the number
prediction task, which jointly evaluates the model’s
ability to identify the subject and its ability to assign
the correct number to noun phrases.

8 Related Work

The majority of NLP work on neural networks eval-
uates them on their performance in a task such as
language modeling or machine translation (Sunder-
meyer et al., 2012; Bahdanau et al., 2015). These
evaluation setups average over many different syn-
tactic constructions, making it difficult to isolate the
network’s syntactic capabilities.

Other studies have tested the capabilities of RNNs
to learn simple artificial languages. Gers and Schmid-
huber (2001) showed that LSTMs can learn the
context-free language anbn, generalizing to ns as
high as 1000 even when trained only on n ∈
{1, . . . , 10}. Simple recurrent networks struggled
with this language (Rodriguez et al., 1999; Rodriguez,
2001). These results have been recently replicated
and extended by Joulin and Mikolov (2015).

Elman (1991) tested an SRN on a miniature lan-
guage that simulated English relative clauses, and
found that the network was only able to learn the
language under highly specific circumstances (El-
man, 1993), though later work has called some of his
conclusions into question (Rohde and Plaut, 1999;
Cartling, 2008). Frank et al. (2013) studied the ac-
quisition of anaphora coreference by SRNs, again
in a miniature language. Recently, Bowman et al.
(2015) tested the ability of LSTMs to learn an artifi-
cial language based on propositional logic. As in our
study, the performance of the network degraded as
the complexity of the test sentences increased.

Karpathy et al. (2016) present analyses and visual-
ization methods for character-level RNNs. Kádár et
al. (2016) and Li et al. (2016) suggest visualization
techniques for word-level RNNs trained to perform
tasks that aren’t explicitly syntactic (image caption-
ing and sentiment analysis).

Early work that used neural networks to model
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grammaticality judgments includes Allen and Sei-
denberg (1999) and Lawrence et al. (1996). More re-
cently, the connection between grammaticality judg-
ments and the probabilities assigned by a language
model was explored by Clark et al. (2013) and Lau
et al. (2015). Finally, arguments for evaluating NLP
models on a strategically sampled set of dependency
types rather than a random sample of sentences have
been made in the parsing literature (Rimell et al.,
2009; Nivre et al., 2010; Bender et al., 2011).

9 Discussion and Future Work

Neural network architectures are typically evaluated
on random samples of naturally occurring sentences,
e.g., using perplexity on held-out data in language
modeling. Since the majority of natural language sen-
tences are grammatically simple, models can achieve
high overall accuracy using flawed heuristics that
fail on harder cases. This makes it difficult to distin-
guish simple but robust sequence models from more
expressive architectures (Socher, 2014; Grefenstette
et al., 2015; Joulin and Mikolov, 2015). Our work
suggests an alternative strategy—evaluation on natu-
rally occurring sentences that are sampled based on
their grammatical complexity—which can provide
more nuanced tests of language models (Rimell et al.,
2009; Bender et al., 2011).

This approach can be extended to the training
stage: neural networks can be encouraged to develop
more sophisticated generalizations by oversampling
grammatically challenging training sentences. We
took a first step in this direction when we trained
the network only on dependencies with intervening
nouns (Section 6). This training regime indeed im-
proved the performance of the network; however, the
improvement was quantitative rather than qualitative:
there was limited generalization to dependencies that
were even more difficult than those encountered in
training. Further experiments are needed to establish
the efficacy of this method.

A network that has acquired syntactic represen-
tations sophisticated enough to handle subject-verb
agreement is likely to show improved performance
on other structure-sensitive dependencies, including
pronoun coreference, quantifier scope and negative
polarity items. As such, neural models used in NLP
applications may benefit from grammatically sophis-

ticated sentence representations developed in a multi-
task learning setup (Caruana, 1998), where the model
is trained concurrently on the task of interest and on
one of the tasks we proposed in this paper. Of course,
grammatical phenomena differ from each other in
many ways. The distribution of negative polarity
items is highly sensitive to semantic factors (Gian-
nakidou, 2011). Restrictions on unbounded depen-
dencies (Ross, 1967) may require richer syntactic
representations than those required for subject-verb
dependencies. The extent to which the results of our
study will generalize to other constructions and other
languages, then, is a matter for empirical research.

Humans occasionally make agreement attraction
mistakes during language production (Bock and
Miller, 1991) and comprehension (Nicol et al., 1997).
These errors persist in human acceptability judg-
ments (Tanner et al., 2014), which parallel our gram-
maticality judgment task. Cases of grammatical
agreement with the nearest rather than structurally rel-
evant constituent have been documented in languages
such as Slovenian (Marušič et al., 2007), and have
even been argued to be occasionally grammatical
in English (Zwicky, 2005). In future work, explor-
ing the relationship between these cases and neural
network predictions can shed light on the cognitive
plausibility of those networks.

10 Conclusion

LSTMs are sequence models; they do not have built-
in hierarchical representations. We have investigated
how well they can learn subject-verb agreement, a
phenomenon that crucially depends on hierarchical
syntactic structure. When provided explicit supervi-
sion, LSTMs were able to learn to perform the verb-
number agreement task in most cases, although their
error rate increased on particularly difficult sentences.
We conclude that LSTMs can learn to approximate
structure-sensitive dependencies fairly well given ex-
plicit supervision, but more expressive architectures
may be necessary to eliminate errors altogether. Fi-
nally, our results provide evidence that the language
modeling objective is not by itself sufficient for learn-
ing structure-sensitive dependencies, and suggest that
a joint training objective can be used to supplement
language models on tasks for which syntax-sensitive
dependencies are important.
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Figure 5: Activation plots for all units (see Figure 3a).
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