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ACADEMIE EUROPEENNE INTERDISCIPLINAIRE DES SCIENCES
INTERDISCIPLINARY EUROPEAN ACADEMY OF SCIENCES

Séance du Lundi 7 mars 2022 mixte présentiel-distanciel

La séance est ouverte a 15h30, sous la Présidence de Victor MASTRANGELO

o Etaient présents physiquement nos Collégues membres titulaires : Gilbert BELAUBRE, Jean
BERBINAU, Eric CHENIN, Frangoise DUTHEIL, Iréne HERPE-LITWIN, Jean SCHMETS Jean-Pierre
TREUIL accompagné d’un invité Frangois DUBOIS.

e Etaient présent physiquement notre Collégue membre correspondant Benoit PRIEUR

o Etaient connectés a distance nos Collégues : Jean-Louis BOBIN, Gilles COHEN-TANNOUDJI
accompagné du co-auteur de la conférence Jean-Pierre GAZEAU, Ernesto DI MAURO, Jean-Félix
DURASTANTI, Jacques FLEURET, Michel GONDRAN, Christian GORINI, Abdel KENOUFI, Antoine
LONG, Marie-Frangoise PASSINI, Edith PERRIER, Jacques PRINTZ, Enrico SARTORI

o Ktait excusée notre Collégue : Anne BURBAN

I. Conférence de notre Collegue Gilles COHEN-TANNOUDJI :
La matiere sombre a la croisée des chemins de deux modeéles standards

1. Prologue a la conférence par notre président Victor MASTRANGELO

Nous avons le plaisir pour cette séance du mois de mars d’écouter une conférence de notre collegue
Gilles COHEN-TANNOUDIJI. Je lui ai demandé de bien vouloir intervenir car la conférenciére qui était
programmée dans le cadre de la préparation du prochain colloque n’est finalement pas disponible.

Je remercie Gilles pour sa disponibilité et pour son aimable coopération.

Il n’est pas d’usage de présenter un membre de I’AEIS, je vais toutefois le faire car je saisis cette
occasion pour porter a la connaissance des collégues qui sont arrivés ces derniéres années les contributions
significatives de Gilles aux cotés de notre collégue Gilbert BELAUBRE et ensuite de moi-méme dans le
fonctionnement et le rayonnement scientifique de I’ AEIS et par 1a méme le remercier chaleureusement au
nom de notre société savante.

Gilles a fait toute sa carriére scientifique comme physicien théoricien au Département de Physique
théorique des particules ¢lémentaires du CEA Saclay. Il est ancien éléve de I’Ecole Polytechnique (promotion
1958) et a soutenu son Doctorat d’Etat en Physique en 1967.

Il a fait en parallele des travaux en Cosmologie et en Philosophie des sciences. Les travaux du
philosophe des sciences Ferdinand GONSETH 1I’ont semble-t il beaucoup inspiré.

Au cours de sa carriére il a eu aussi des activités pédagogiques. Il a entre autres dispensé des cours au
Magistere de Physique de I’Université d’Orsay avec notre collegue Alain CORDIER, directeur a I’époque de
ce cursus.

Présentement il poursuit comme chercheur émérite ses travaux au sein du Laboratoire de recherche sur
les Sciences de la matiere LARSIM du CEA-Saclay.

11 est aussi Conseiller scientifique de la Direction de la recherche fondamentale du CEA

Il a écrit un certain nombre d’ouvrages qui sont listés dans le document d’annonce de sa conférence.

Je souhaite simplement mentionner celui emblématique qui a suivi la découverte du Boson de Higgs
au CERN a Geneve en juillet 2012




Le Boson et le Chapeau mexicain titre de 1’ouvrage publi¢ aux éditions Gallimard, avec comme co-
auteur notre collégue Michel SPIRO, retrace la fabuleuse et longue aventure scientifique de chercheurs du
monde entier qui a abouti a la découverte du Boson de Higgs et par 1a consolidé le modé¢le standard de la
Physique des particules dont il va étre en partie question dans sa conférence.

Le titre de son livre résume a lui seul ’aboutissement de cette découverte ou un champ scalaire
quantique dont le potentiel a la forme d’un chapeau mexicain conduit a une brisure de symétrie et permet
d’expliquer la masse des particules.

Je voudrais citer a présent en quelques mots les nombreuses contributions de Gilles dans le
fonctionnement et le rayonnement scientifique de I’AEIS en sa qualit¢ de membre mais aussi comme
conseiller scientifique pour les sciences de la matiére.

I1 a intégré I’AEIS en 1’an 2000 a la suite de sa forte participation au colloque sur le theme « Le siécle
des quanta » au Palais de la Découverte a I’occasion du centenaire de la naissance de la Physique quantique
et ’apparition par voie de conséquence d’une nouvelle constante fondamentale celle dite de Planck.

11 a participé depuis a I’¢laboration des différents colloques organisés par I’AEIS. Il a aussi contribué
— je dois le souligner — a récolter régulierement des ressources financieéres pour notre société savante en
sollicitant la direction de la recherche fondamentale du CEA.

I1 s’est fortement impliqué dans deux colloques prestigieux de I’AEIS dans lesquels sont intervenus
des prix Nobel de Physique. Celui de 2005 sur « Physique et conscience » en cloture de I’année mondiale de
la Physique au Ministére de la Recherche rue Descartes et ensuite celui de 2016 « Ondes, matiére et univers »
a I’Institut Henri Poincaré en cloture du centenaire de la publication par Albert Einstein de sa théorie sur la
Relativité générale.

Aujourd’hui il va nous entretenir d’un sujet fondamental de la Cosmologie : la nature de la matiere
noire.

Il nous a proposé comme titre, je cite, « La matiére noire a la croisée des chemins de deux modéles
standards »

2. Conférence de notre Collégue Gilles COHEN-TANNOUDJI

a) Résumé de la conférence de notre Collégue Gilles COHEN-TANNOUDJI :

La matiére sombre a la croisée des chemins de deux modeéles standards
Par Gilles COHEN-TANNOUDJI et Jean-Pierre GAZEAU (*)

Résumé

Dans une publication récente, nous avons montré qu'un modele cosmologique standard, constitué de
maticre noire interprétée comme un condensat gluonique de Bose-Einstein dans I'espace-temps anti de
Sitter, et d'énergie sombre liée a la constante cosmologique, est enti¢rement compatible avec le mod¢le
standard de la physique des particules basé¢ sur la théorie quantique des champs, sans qu'il soit nécessaire
d'invoquer de nouveaux champs, ou particules, ou variables cachées, ad hoc. Au cours de nos recherches,
deux questions critiques ont été abordées dans d’autres publications, sous presse ou en cours d’élaboration,
la question du temps en cosmologie et la question de bosons scalaires ultralégers requis par le mécanisme
de condensation de Bose-Einstein.




(*) La conférence traite d’un article publié conjointement par Gilles COHEN-TANNOUDII, et Jean-Pierre
GAZEAU,

chercheur émérite au laboratoire « Astroparticules et cosmologie » de I'Université de Paris.

Présentation succincte du conférencier :

* Gilles COHEN-TANNOUDII est physicien théoricien au CEA depuis presque soixante ans en physique des
particules, puis en cosmologie et en philosophie des sciences. Il a enseigné au niveau DEA ou master a I'université
d'Orsay et a la Sorbonne.

* Aujourd'hui retraité, chercheur émérite au Laboratoire de recherche sur les sciences de la matiere (LARSIMCEA-
Saclay), il est conseiller scientifique aupres de la direction de la recherche fondamentale au CEA.

* [l est membre d'honneur de 1'Académie des sciences, belles lettres et arts de Lyon.

* Il est 'auteur de plusieurs ouvrages de popularisation de la science, dont, avec Jean-Claude Boudenot, « Max
Planck et quanta » (Ellipses, 2001) ; avec Michel Spiro, « La matic¢re-espace-temps » (Fayard 1986), « Le

boson et le chapeau mexicain » (Gallimard 2013), « Relativité et quanta...une nouvelle révolution

scientifique » (Le Pommier 2017).

* La plupart de ses publications peuvent étre retrouvées sur son site : http://www.gicotan.fr




b) Synthése (provisoire) réalisée par notre Collegue Jean-Pierre TREUIL sachant que bientot la
synthese définitive sera accessible sur le site Comptes-rendus conférences mensuelles du site de
I'AEIS http://www.science-inter.com

Compte rendu (Work in Progress) de I’exposé présenté
par Gilles COHEN-TANNOUDJI, associé a Jean-Pierre GAZEAU,
devant ’AEIS le 7 mars 2022

Lors de cette séance mensuelle de 1’ AEIS, notre collegue Gilles COHEN-TANNOUDIJI a présenté¢ le travail
qu’il mene avec Jean-Pierre GAZEAU sur la nature de la matiére noire, appelée ici mati¢re sombre, et les
propositions qu’il en est résulté. Travail qui vient d’étre publi¢ dans la revue universes (MDPI)

Avant d’entrer « dans le vif du sujet» le conférencier a développé des considérations historiques et
épistémologiques sur la notion de « mod¢le » standard », sur la naissance au milieu du XX siecle de ces deux
disciplines que sont la cosmologie scientifique et la physique des particules, et enfin sur leurs mode¢les
standards respectifs. Nous y reviendrons plus loin, préférant aborder directement le fond de la thése avancée.
Le but de ce compte rendu, est sans vouloir étre complet, de rappeler des notions et de poser des jalons qui
nous semblent nécessaires pour entrer dans la compréhension des travaux effectués et de leurs résultats.
C’¢était aussi I’objectif de I’exposé de Gilles COHEN-TANNOUDII.

1. Le rappel de la dynamique de 1’univers dans le modéle ACDM

Tout d’abord, il parait utile, comme I’a fait le conférencier, de rappeler les bases équationnelles (équations
de Friedmann-Lemaitre) du modele ACDM, modele standard de la cosmologie. Tout part de /’équation
d’Einstein, liant localement (a tel endroit et tel instant ) la géométrie de I’Espace-Temps (partie gauche de
I’équation) au contenu matériel et énergétique au méme endroit et au méme instant (partie droite). Cette
équation mobilise deux constantes : la constante de gravitation G (de Newton) et la constante cosmologique
A. Cette derni¢re est écrite habituellement a droite de I’équation, du c6té du contenu, ce qui incite a la
considérer comme manifestant la présence d’un contenu €nergétique complémentaire (identifié¢ a [’énergie
sombre), a co6té du contenu matériel. Mais on peut aussi bien la placer a gauche de 1’équation, du coté
géométrie, ce qui en change I’interprétation. De I’équation d’Einstein se déduisent mathématiquement /es
équations de Friedmann qui contrdlent la dynamique d’un Univers supposé « homogene », ne privilégiant
aucun point de vue particulier. Elles consistent en un petit nombre d’équations différentielles contrdlant la
dynamique du facteur d’échelle (le « rayon » de I’Univers) noté a, de son taux d’expansion (la « constante »
de Hubble ') H ainsi que I’évolution de la densité p et de la pression P moyenne. Outre G et A, ce systéme
d’équations mobilise un paramétre K intervenant dans la courbure spatiale moyenne. A ces trois parametres
fondamentaux G, A et K viennent s’ajouter les paramétres des « équations d’état », liant pour chacune des
composantes du contenu matériel et énergétique leurs densités et pressions respectives ; ces composantes sont
dans le modele ACDM au nombre de 4 : composante de matiere ordinaire (baryonique), composante radiative
(photons), composante de matiére sombre, et enfin une composante d’énergie sombre, mathématiquement
sinon physiquement liée a la valeur de la constante cosmologique.

Mais les observations ont montré que I’univers était trés proche d’étre spatialement plat (K = 0), a un degré
de précision tel que on pouvait le considérer comme tel. Ce qui implique que sa densité moyenne (somme
des densités de toutes les composantes) soit égale a une « densité critique » uniquement fonction du taux
d’expansion et de la constante de gravitation. Cette exigence de platitude s’exprime donc, en rapportant
chaque densité a la densité critique, par une somme de rapports sans dimension (notés « Q »), somme devant
étre égale a 1.

La dynamique de I’univers, savoir a(?), évolution en fonction du temps du facteur d’échelle a, se décompose
en trois phases, une phase primordiale dite d 'inflation, ou le facteur d’échelle, partant d’une valeur tres faible

! Dont la valeur évolue cependant dans le temps.


http://www.science-inter.com/Pages%20AEIS/Comptesrendus/comptesrendus.htm
http://www.science-inter.com/

évolue (approximativement) exponentiellement avec le temps ; le taux d’expansion dans cette phase est par
contre trés élevé, de I’ordre de H,, = c/L,,, rapport entre la vitesse de la lumiére et la longueur de Planck, le
temps significatif est donc de 1’ordre de 10"{-43} secondes ; cette phase s’achéve au bout d’un temps
extrémement court, aprés quoi démarre la seconde phase ou 1’expansion se poursuit en décélérant. Cette
seconde phase est trés longue, s’étendant sur plusieurs milliards d’années ; la dynamique de I'univers y est
contrdlée essentiellement par la matiére (matiére sombre, photons, mati¢re ordinaire) la somme des trois
densités étant encore suffisamment forte pour supplanter 1’effet de la quatriéme composante, 1’énergie
sombre. Mais cette derniére a fini par devenir prépondérante, 1’expansion s’est accélérée® a nouveau et est
redevenue exponentielle, mais cette fois avec un taux beaucoup plus faible que lors de la premiere phase, de
I’ordre de Hy, = c/L,, rapport entre la vitesse de la lumiére et le rayon de Hubble atteint a cette époque et

valant L, = +/3/A, le temps significatif étant alors de ’ordre de quelques 18 milliards d’années : on voit
I’énorme différence entre les deux phases d’expansion exponentielle, la primordiale et la finale.

Rayon et Horizon de Hubble.

Ces différences de temps significatifs entre ces trois phases incitent a utiliser une autre représentation dans
laquelle le temps est implicite. Cette représentation mobilise la relation entre deux grandeurs. La premiere,
portée en abscisse en échelle logarithmique, est tout simplement le facteur d’échelle a. La seconde, portée en
ordonnée avec une échelle également logarithmique, le rayon de Hubble ¢/H. Qui a bien la dimension d’une
longueur.

Ce rayon de Hubble est la distance qui sépare deux observateurs® gardant une position spatiale « fixe » par
rapport a I’environnement immédiat de chacun d’eux, mais qui, de par I’expansion, s’¢loignent I’un de I’autre
avec une vitesse ayant atteint la vitesse de la lumiere. Dans une phase ou un tel rayon reste constant le rayon
de Hubble s’interpréte comme un horizon, 1’horizon des évenements : c’est, a chaque instant du temps
cosmique, la distance physique maximale entre un observateur et les événements ayant lieu a ce méme instant
et qui pourront un jour étre observé par cet observateur : aucun signal émis par des événements au-dela de
cette limite de distance ne lui parviendra jamais®.

Le graphique obtenu présente donc de fagon schématique la relation entre le rayon de Hubble L et le facteur
d’échelle a, et la maniére dont cette relation se comporte successivement pour les trois phases : dans la
premicre phase, le rayon de Hubble est tracé comme constant et la croissance est donc exponentielle ; dans
la seconde phase le rayon de Hubble augmente avec le facteur d’échelle (I’horizon des événements un jour
observables s’¢largit), le taux d’expansion diminue et I’expansion décélére. Enfin, dans la troisieme phase,
le rayon de Hubble désormais trés élevé reste a nouveau constant et 1’expansion retrouve son régime
exponentiel. C’est ce graphique qui sert a Gilles COHEN-TANNOUDIJI pour placer en les datant les
différents événements physiques dont il va parler.

2. Un peu de géométrie

Comment le vide a-t-il donné naissance a la matiére ? Pour dire les choses sans doute trop simplement, ¢’est
la question que se posent Gilles COHEN-TANNOUDIJI et Jean-Pierre GAZEAU, dans I’effort de comprendre
ce qui se passe vraiment antérieurement et lors du « big bang » . Cette question fondamentale est partagée
par toute une communauté de scientifiques, visant a fonder la base de ce que notre conférencier appelle une
« cosmogonie scientifique ».

Avant d’essayer de voir comment ils tentent d’y répondre, nécessité est de comprendre quels sont les types
d’espace-temps dans lesquels vont se produire ces événements. A ce propos d’ailleurs, formuler la question
ainsi pose déja probléme, car elle suppose que 1’on puisse parler d’espace-temps indépendamment de son

21l y a environ 4 milliards d’années en ordre de grandeur

3 0n les appelle des « observateurs fondamentaux » , concrétement juchés chacun au coeur d’une galaxie, chacune d’elle
s’éloignant I'une de I'autre avec une vitesse proportionnelle a leur distance

4 Du fait de I'expansion, les événements survenant dans les galaxies situées a un certain instant a l'intérieur de I’horizon seront
bien un jour pergus par I'observateur situé au centre de cette sphére céleste de rayon L. Mais ces mémes galaxies, entrainées par
I’expansion, vont finir par franchir cet horizon, et a cet instant leur histoire ne sera jamais plus accessible. Et I'observateur se
trouvera ainsi dans un monde de plus en plus vide, et les signaux provenant de I'espace se raréfieront de plus en plus



contenu matériel. Dans 1’équation d’Einstein, et donc dans les équations de Friedmann, I’espace-temps et le
contenu matériel désignent en effet des choses qui « existent » séparément, ces équations ne faisant que relier
les propriétés respectives de I’un et de 1’autre.

Espaces de de Sitter

De fait, les équations de Friedmann sont compatibles avec un espace-temps « vide » c’est-a-dire précisément
dans lequel la densité de matiere p est nulle. Mais cette contrainte limite trés fortement les types d’espaces
temps possibles. L’un d’eux intéresse en premier chef car il constitue un modele (limite) de ceux en ceuvre
aux deux phases extrémes de I’évolution de 1’Univers décrites précédemment : la phase primordiale
d’inflation, et la phase finale de « ré-inflation » Dans ce modéele limite commun aux deux phases, la courbure
spatiale est nulle, le taux d’expansion et donc le «rayon de Hubble » est constant, I’expansion est
exponentielle. L espace-temps supportant ces dynamiques est un espace-temps dit « de de Sitter plat® ».

Comme d¢ja dit, I’intervention de la constante cosmologique dans les équations de Friedmann de 1’espace-
temps de de Sitter de la phase finale peut étre interprétée par celle d’une densité constante d’un « fluide ».
On peut alors s’étonner d’une telle densité constante dans un univers en expansion, qui semblerait contredire
la loi de conservation de 1’énergie. C’est oublier que 1’énergie d’un fluide « au repos » n’est pas concentrée
uniquement dans la matiére de ce fluide. Une part de cette énergie réside également dans sa pression P.
L’équation de conservation impose alors pour ce fluide une pression négative qui de fagon imagée peut figurer
la « force » cause de 1’expansion, chaque petite région spatiale étant « tirée » vers 1’extérieur par une fension
positive.

Par ailleurs, dans 1’espace de de Sitter modélisant la phase finale, le taux d’expansion constant vaut, comme

déja dit, Hy, = c/A/3 . Ce lien entre les deux grandeurs se déduit immédiatement des équations de
Friedmann en prenant la densité de matiere p nulle. Mais qu’en est-il dans la phase primordiale, ou sa valeur
est placée dans le graphique présenté par le conférencier autour de H, = ¢/Ly, ? Quel phénomene assure cette
valeur infiniment plus grande ? Ce probléme se « résout »® en supposant que, lors de 1’inflation primordiale
agit un champ uniforme d’énergie appelé inflaton. Dans ces conditions, afin que le rayon de Hubble, donc le
taux d’expansion, soient constants et que I’expansion soit en conséquence exponentielle, il faut que ce champ
reste « figé » a un certain niveau d’énergie. Ce modele de champ figé ne peut étre qu’une approximation,
valable uniquement pendant un certain temps, puisqu’il faut bien que la phase d’inflation primordiale
s’acheve.

Espaces Anti de Sitter

Mais les espaces de de Sitter ne sont pas les seules solutions des équations de Friedmann lorsqu’on impose
que la densité de matiere p soit nulle. Il existe entre autres un type d’espace temps répondant a ces équations
pour des valeurs négatives de la constante cosmologique. Un simple regard sur les €équations montre alors
que ces espaces temps ne peuvent tre spatialement plat. Leur courbure spatiale (le parameétre K des équations)
est nécessairement négative. Ce sont les espaces temps dit « Anti de Sitter » La solution des équations de
Friedmann aboutit a facteur d’échelle variant périodiquement avec le temps ! avec a(t) de la forme a(t) =
1/w cos wt ot la pulsation w vaut ¢,/ —A/3 . Ces espaces « pathologiques » vont pourtant étre invoqués par
Gilles COHEN-TANNOUDII et Jean-Pierre GAZEAU : leur mise en ceuvre dans une phase cruciale de
I’évolution de I’'univers — celle ou va apparaitre la maticre ordinaire « hadronique » - pour expliquer
I’existence de la matiére noire

Symétries de-sitterriennes et anti-de-sitterriennes
La notion de symétrie est si importante dans le travail de Gilles COHEN-TANNOUDIJI et de Jean-Pierre
GAZEAU, comme d’ailleurs dans la physique fondamentale contemporaine, qu’il est indispensable d’en dire

5 En réalité, 'espace temps de de Sitter est si particulier, du fait de ses symétries qui sont maximales, que selon le systéme de
coordonnées choisies, on peut définir ses sections spatiales de diverses manieres, pouvant étre plates (euclidiennes), sphériques
ou hyperboliques. Dans le cadre de ce compte rendu, nous n’entrerons pas dans cette discussion et raisonnerons avec le systéeme
de coordonnées dans lequel sont écrites classiquement les équations de Friedmann

6 Bien sdr, I'inflation s’appuie sur un certain nombre de considérations théoriques et de faits d’observation (mission Planck...) mais
reste une hypothése



un mot. En mathématiques on appelle symétrie toute transformation laissant inchangées une ou plusieurs
grandeurs, dites en conséquence grandeurs invariantes.

Back to basic, considérons d’abord notre espace « ordinaire » a trois dimensions et les « transformations »
qui conservent les distances, nommées isométries. Par transformation 7 on entend toute procédure faisant
passer de tout point P de 1’espace a un autre point 7P. C’est une isométrie si la distance entre deux points
reste la méme dans la transformation : dist(TP,TP’) = dist(P,P’). Ces transformations, on les connait bien ;
ce sont les translations et les rotations. Observons que 1’on dispose de six degrés de liberté pour définir une
1sométrie particuliére, combinaison d’une translation et d’une rotation : les trois composantes du vecteur de
translation, et les trois angles de la rotation (deux angles pour définir I’axe de rotation et un angle pour définir
son amplitude). Observons aussi que ce nombre de six vaut n(n + 1)/2 avec n=3, la dimension de notre
espace.

On montre que cette formule se généralise : dans un espace dit « métrique » c’est-a-dire dans lequel on a pu
définir une métrique (une maniere de mesurer les distances), de dimension 7, le nombre maximum de degrés
de liberté disponibles pour définir une isométrie est de n(n+ 1)/2; ainsi, pour un espace a quatre
dimensions, sera-t-il de 4x5/2 = 10, etc. Bien stir, le nombre effectif dépendra de la maniere dont la métrique
est définie : pour certaine définition, le nombre maximal sera effectivement atteint. De tels espaces sont dit

maximalement symétriques’.

Back to basic encore, considérons dans notre espace ordinaire la surface d’une sphére de centre O et les
rotations centrées sur O : il est clair que ces rotations laissent la sphére invariante : tout point de sa surface
sera transformé en en autre point de la méme surface.

La surface d’une sphéere est un espace de dimension #n=2; le nombre maximum de degrés de libertés des
1sométries dans cet espace réduit a deux dimensions est de 2x3/2 = 3, ce qui est bien le nombre de degrés de
libertés des rotations de centre O : la surface de la sphere est elle aussi maximalement symétrique.

Mais alors qu’en est-il de la distance sur la surface de la sphere. Nous pourrions tomber dans un certain piége,
savoir définir la distance entre deux points de la surface par celle définies dans 1’espace a trois dimensions.
C’est oublier que si nous vivons sur la surface de la sphere, nous ne pouvons qu’y rester et suivre, par exemple
le segment d’un grand cercle pour aller d’un point a un autre. La distance sur la sphere est bien induite par
celle dans I’espace ordinaire, mais par une procédure, plus subtile, mettant en ceuvre I’égalité, a la limite, des
formules donnant dans chaque espace la distance ds de deux points trés proches et qui tendent a se rejoindre
(couple qu’on appellera « points infiniment proches »)

Revenons maintenant a 1’espace de de Sitter a 4 dimensions, dont I’une est temporelle, c’est pourquoi on
parle aussi d’espace-temps. Sa métrique est définie par la formule donnant la distance ds de deux « points »
spatio-temporels, c’est-a-dire deux évenements, infiniment proches, en fonction des écarts de coordonnées
entre ces événements dans le systéme de coordonnées choisi. De méme que la sphére est une surface
d’équation X% + Y? 4+ Z? = R? dans notre espace ordinaire a 3 dimensions, on montre que 1’espace de de
Sitter est une « hypersurface » a quatre dimensions d’équation ayant la forme —T2 + W2 + X2 + Y2 + Z% =
R? dans un espace a 5 dimensions ; & condition que cet espace englobant soit muni d’une métrique définie
par ds? = —dT? +dW? +dX?+dY?+dZ?, afin de bien induire celle définic sur de Sitter
indépendamment de cette convention de représentation. La valeur du « rayon » R intervenant dans 1’équation
de ’hypersurface, dans notre contexte cosmologique, est justement celle du rayon de Hubble L dont il a été
question précédemment.

Les isométries de 1’espace englobant ont 5X6/2 = 15 degrés de liberté. En se limitant aux isométries laissant
le point origine invariant, il ne reste plus que 15-5 =10 degrés de liberté ; Ces « hyperrotations » laissent
invariante I’hypersurface représentant 1I’espace de de Sitter, lequel est bien maximalement symétrique, 10
valant aussi 4x5/2.

7 C’est d’ailleurs le cas de notre espace ordinaire ; Dieu merci, nous vivons dans un espace maximalement symétrique !!
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Un dernier point sur de de Sitter ; vu la formule de la métrique dans I’espace englobant, on dit que cette
métrique a pour signature -1,1,1,1,1. C’est la signature des espaces dit de Minkowski, dont la version 4
dimension est celle de I’espace-temps de la relativité restreinte. Le signe moins, unique dans cette signature,
est associé au temps. Cette unicité du signe moins disparait lorsqu’on passe aux espaces Anti de Sitter .

Venons-en donc a ces derniers espaces. La méme démarche leur est appliquée. Elle aboutit a les considérer
comme des hypersurfaces d’un espace englobant a 5 dimensions muni d’une métrique définie cette fois ¢i par
ds? = —dU? — dV? + dX? + dY? + dZ? donc de signature -1,-1,1,1,1. Les équations des hypersurfaces
représentant les espaces anti de Sitter sont alors de la forme —U? —V? + X? + Y? 4+ Z? = —R? La valeur

du « rayon » R valant cette fois, dans notre contexte cosmologique, 4/ —3/A. Ici encore, les isométries de
I’espace englobant ont 15 degrés de liberté, et parmi elles, les hyperrotations laissant invariantes les
hypersurfaces Anti de Sitter en ont 10. Les espaces anti de Sitter sont eux aussi maximalement symétriques.

Le passage des espaces de de Sitter et Anti de Sitter décrit directement dans leurs métriques respectives a 4
dimensions, a leur représentation comme hypersurfaces a 5 dimensions apporte des avantages
mathématiques : Les métriques des espaces englobants sont simples et bien connues, de méme que leurs
groupes d’isométries respectifs. Si bien qu’il est plus facile de raisonner en les utilisant. Par-dela des
avantages purement « calculatoires » apportés par ces représentations, ces dernicres et en particulier
I’introduction de la cinquiéme dimension ont elles quelque réalité physique ?

3. Un peu de mécanique

La relativité restreinte avait déja posé le probléme : la quantité de mouvement ou impulsion et I’énergie d’une
particule ne sont pas en elle-méme des quantités absolues. Une particule sera au repos dans un certain
référentiel, elle aura alors une quantité de mouvement nulle, et une certaine énergie. Dans un autre référentiel,
celui d’un observateur en mouvement par rapport a cette particule, ce dernier lui attribuera une certaine
impulsion, et une autre énergie. S’il se déplace par rapport a la particule a une vitesse constante proche de la
vitesse de la lumicre, impulsion et énergie, mesurées par cet observateur, seront toutes deux proches de
I’infini. Mais, de méme qu’une certaine combinaison des intervalles temporels et spatiaux entre deux
événements est invariante (—dT? + dX? + dY? + dZ?), de méme une certaine combinaison de ’énergie E
et de I'impulsion p reste-elle inchangée lorsque on change de référentiel. Elle sera la méme pour tout
observateur « inertiel » Cette combinaison invariante est E2/c? — p? et sa valeur vaut (mc)?ou m est la
masse propre de la particule. C’est la relation d’Einstein, conduisant dans un référentiel ou p=0a E = mc?

Cette invariance est spécifique a 1’espace-temps de Minkowski de la relativité restreinte. Mais on est
maintenant un peu plus armé pour comprendre la démarche de Jean-Pierre GAZEAU dans la recherche
d’invariances concernant masses, énergie et I’impulsion dans les espace-temps de de Sitter et d’ Anti de Sitter.

4. L’approche combinée de Gilles COHEN-TANNOUDIJI et Jean-Pierre GAZEAU.
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Abstract: An explanation of the origin of dark matter is suggested in this work. The argument is based
on symmetry considerations about the concept of mass. In Wigner’s view, the rest mass and the spin
of a free elementary particle in flat space-time are the two invariants that characterize the associated
unitary irreducible representation of the Poincaré group. The Poincaré group has two and only two
deformations with maximal symmetry. They describe respectively the de Sitter (dS) and anti-de Sitter
(AdS) kinematic symmetries. Analogously to their shared flat space-time limit, two invariants, spin
and energy scale for de Sitter and rest energy for anti-de Sitter, characterize the unitary irreducible
representation associated with dS and AdS elementary systems, respectively. While the dS energy
scale is a simple deformation of the Poincaré rest energy and so has a purely mass nature, AdS rest
energy is the sum of a purely mass component and a kind of zero-point energy derived from the
curvature. An analysis based on recent estimates on the chemical freeze-out temperature marking in
Early Universe the phase transition quark—-gluon plasma epoch to the hadron epoch supports the
guess that dark matter energy might originate from an effective AdS curvature energy.

Keywords: de Sitter; anti-de Sitter; group representation; hadronization; dark matter; zero-point
energy; quark-gluon plasma; critical point

MSC: 81R05; 85A04; 81V05

1. Introduction: Some (Observational) Facts about Dark Matter

According to the Planck 2018 analysis of CMB power spectrum [1], our Universe is spatially flat,
accelerating, and composed of 5% baryonic matter, 27% cold dark matter (CDM, non baryonic), and
68% dark energy (A). (Cold) dark matter [2] is observed by its gravitational influence on luminous,
baryonic matter. The dark matter mass halo and the total stellar mass are coupled through a function
that varies smoothly with mass (see [3] and references therein), with possible noticeable exception(s)
like the recent [4-6]. Up to now, all hypothetical particle models (WIMP, Axions, Neutrinos ...) failed
direct or indirect detection tests. Alternative theories (e.g., MOND), which negate the existence of dark
matter as a physical entity, have failed to explain clusters and the observed pattern in the CMB.

In this article, we view dark matter as a physical entity and we propose an explanation of its
current existence as the remnant, after hadronization, of the zero-point energy of the quark—gluon
plasma (QGP) [7] due to an effective anti-de-Sitterian environment experienced by the QGP massive
constituents existing at the so-called quark epoch, over about 10712 s till 107 s after the Big-Bang and
subsequent to the inflation (over about 10733 s till 10732 s).

Section 2 is a survey of Poincaré, de Sitter, and anti-de Sitter kinematic symmetries and their
quantum realizations in terms of the unitary irreducible representations (UIR) of the corresponding
relativity groups which are labeled by spin and ~mass invariants. In Section 3, these de Sitter and
anti-de Sitter massive representations are considered from the point of view of their Minkowskian
contraction limits in terms of the so-called Garidi mass formulas. We then reexamine in Section 4 the
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Universe 2020, 6, 66 20f7

dark matter enigma by advancing three hypotheses based on the anti-de Sitter Garidi mass formula and
the experimental evidence of the phase transition from hadronic confinement to QGP deconfinement.
We conclude in Section 5 with a few comments.

2. Mass and Symmetries

In Minkowski (M), the concept of (rest) mass originates from the ubiquitous law of conservation
of energy, a direct consequence of the Poincaré symmetry. This concept was formulated by Wigner [8]
in rigorous mathematical terms as associated with the concept of elementary system. The latter is
a description of a set of states which forms a unitary irreducible representation (UIR) space for the
proper orthochronous Poincaré group P} = R'3 x SOp(1,3) (or R'? » SL(2, C)), semi-direct product
of the translations in Minkowski with the Lorentz group (or its universal covering). The UIRs of the
Poincaré group [9] that we are concerned with here are the massive ones with positive energy. They are
denoted by Uy (m,s) and are completely characterized by the eigenvalues of two Casimir operators,
namely the quadratic Klein-Gordon operator

Q) = prp, =p2 P2,

(1)

with eigenvalues (Qy,') = m?

c2, and the quartic Pauli-Lubanski operator

1
QU = WHWy, Wy = 3 epupo] P

with eigenvalues (in the non-zero mass case) <Q1(v2[)> = —m?c%s(s + 1)

As it was explained in [10], with the requirements of kinematical rotation, parity, and time-reversal
invariance, there exists one way only to deform the Poincaré group P(T), namely, in endowing space-time
with a certain curvature. Hence, there are two possible deformations that are distinguished with the
sign of curvature of the corresponding space-times, namely the de Sitter (dS) and anti-de Sitter (AdS)
space-times [11,12]. More precisely, dS (resp. AdS) are the unique maximally symmetric solutions of
the vacuum Einstein’s equations with positive (resp. negative) cosmological constant A [13]. Their
symmetries are one-parameter deformations of the Minkowskian symmetry with

e negative curvature —s = —H/c=—, /AdS/3
e  positive curvature sags = \/|Aads|/3

Their respective invariances (in the relativity or kinematical sense) hold with respect to the
ten-parameter dS group SOp(1,4) (or its universal covering Sp(2,2)) and the ten-parameter AdS group
SOy(2,3) (or its two-fold covering Sp(4,R), or even its universal covering) groups.

The “massive” UIR’s of the dS [14,15] and AdS [16] groups are those which are deformations
of the above Uy(m, s). Those UIRs are here denoted by U s (¢ CIS,s) and Uags(Gads, ), respectively.
The real dimensionless parameters g s and ¢ ags replace the Minkowskian rest mass. Together with
the spin s, they determine the corresponding UIR through the eigenvalues of dS and AdS invariant
Casimir operators [17]. The dS UIR U (g, ) belongs to the so-called principal series, for which we
have

9 1
QW) =+ —sts+1), Q) = (& +)ste+1),

with g, € R, and s € N/2. Note that U (¢ 4,0) and U (—¢,4,0) are equivalent. The AdS UIR
Uads(¢ads, s) belongs to the so-called discrete series, and we have

(Q1) = caas(Gass —3) +s(s+1), (Q%) = —(gaas — 1)(gass —2)s(s + 1),

withs € N/2and gags = s +2,5+3,... (or gags > s + 1 for the universal covering of SOy(2, 3)).
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There exists an irreconcilable difference between the dS invariant ¢, and the AdS one gags.
The latter is the lowest value of the discrete spectrum of the generator of “time” rotations in AdS [18].
Hence, it can be given a non ambiguous meaning of a rest energy when it is expressed in energy AdS
units fiseaqs/c:

Ejgs := Ncoeads Gads - (1)

Therefore, this physical concept of “energy at rest” survives with the deformation Poincaré —
AdS.

The situation is radically different with dS. The spectrum of the generator of “time” hyperbolic
rotations in dS is not bounded below [19]. Actually, it covers the whole real line. Of course, the invariant

Gg4s Can be given an energy dimension as

E g :=heryg Gy - (2)

3. Minkowskian Content of dS and AdS Elementary Systems: The Garidi Mass

If we wish to go further into the interpretative problem of a mass in a dS/AdS background,
the crucial question to be addressed concerns the interpretation of the dS/AdS UIR’s (or quantum AdS
and dS elementary systems) from a (asymptotically) Minkowskian point of view. We mean by this the
study of the contraction limit sz — 0 or equivalently A — 0 of these representations. The notion of
mass in “de Sitterian Physics” may appear ambiguous in terms of contraction of representation [20,21],
exemplified by the fact that one cannot give a precise meaning to a dS rest energy, except if one
follows an approach based on a causality de Sitterian semi-group [19], or based on a analyticity
prerequisite [22]. Nevertheless, a consistent mass formula has been proposed by Garidi [23] in terms
of the dS UIR parameters ¢, and s:

iy 2,2 1\2
2 _ "% 1 1 i =" 2
Mis = —2 (<Q<(is)> - <Q<(15)|511/2+'gd5>) o« (%s ’ <S 2> > | ’

The minimal value assumed by the eigenvalues of the first Casimir in the set of UIR in the
discrete series is precisely reached at s = 1/2 + ig ,s, which corresponds to the “conformal” massless
case, for which s clearly loses its spin meaning. Controlling the validity of such a formula from a
Minkowskian observer amounts to understanding the contraction (mathematically non-trivial in terms
of sequences of Hilbert spaces [24])

dS UIR — Poincaré UIR
Then, the contraction dS — Poincaré in terms of mass has to be understood as
%4 — 0 and ¢, — +oo while ¢ hisx/c—m.

In terms of representations,

D .
(Sasr5) , 5 Ualms)

gdsh%ds /c—m

Thus, close by the contraction limit,

m for s=1/2
m—i—o(l/gds) for s#£1/2
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The analogous of the Garidi mass for the AdS case exists as well [25,26]. It precisely vanishes for
massless conformal AdS fields that lie at the lowest limit cags = s + 1 of the discrete series.

72542
e = 2 ({Qhds) — (Qhdslepas—s+1))

_ s Cags — > Py
C2 AdS 2 2 .

As for dS, the contraction AdS — Poincaré in terms of mass reads as
spags — 0 and  gags — +oo  while ¢agshizeags/c — m.
The contraction AdS — Poincaré in terms of masses and representations reads as

D(gads,$) — Uni(m,s) .
#Ads—0,6Ads— 0
GAdsizads/c—m

We now show how the rest energy introduced in Equation (1) for a massive AdS elementary system
reveals a universal pure curvature or vibration energy component besides a matter energy content.
From the Garidi mass formula in Equation (4), an AdS elementary system can indeed be viewed
asymptotically [27] as a combination of both a relativistic free particle with rest energy magsc? ~ mc?
and a 3D isotropic quantum harmonic oscillator with zero-point energy %FmAdgc = %sz ads at the first

order in the curvature:

1/2

1 2
Efg; = h%AdSCgAdS = [m%dsC4 + hzszdS <S — ) + Ethds

2

3 1 h2w2 1 2
2 AdS Z2
= MadsC™ + *zthds + 72? <S - 2) +o ( Ads)

3
= MagsC> + Ethds + 0 (sads) -

By contrast, the meaning of energy in dS relativity with regard to its Poincaré limit is less tractable.
It is also exemplified by the absence of any term of order sxq4s besides the dS mass energy

Egs = hstygcG g = Masc® + O(%ds)

One notices the remarkable position occupied by the spin s = 1/2 in the above formulas:

for dS: EdS = md562 ,

for AdS: Effjg = MagsC? + %h%Adsc.

4. Dark Matter as a Relic AdS Curvature Energy?

Dark matter is observed as an energy more or less localized in halos surrounding baryonic matter
in galaxies and galaxy clusters.

Assumption 1. In our approach, the nature of this dark matter energy is supposed to be related to some effective
AdS curvature. Precisely, for a spin 1/2 elementary particle X,

3
Eixedsst = mAds(X)CZ + Eh%AdSCr EDM(X) = T’(X)mAds(X)CZ,
——— Z

visible
Epm(X)
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where the ratio r(X) := Epm(X)/maas(X)c? should reflect to some extent the ratio dark matter/visible matter.
By, “to some extent”, we mean that this individual ratio should be trivially larger that 1, to be compared with
the estimated global ratio 27 /5 = 5.4, and not too large in order to be consistent with most of the observed
ratios halo mass:stellar mass. Typically, a galaxy with a stellar mass of about 2 x 108 M, (M, is the solar mass)
should have a dark matter mass of about 6 x 1010 M see, for instance [3], with noticeable exceptions [6].

Assumption 2. The appearance of dark matter held over a period when the temperature(s) was (were) compatible
with a phase of entities X, compatibility being understood in the sense of validity of the equipartition theorem
applied to the quantum-oscillator-like energy spectrum of an AdS elementary system:

2r(X
kpTx = hpqsc =~ % mAds(X)62 .

The most probable spin 1/2 candidates X in agreement with the above assumptions are stable light quarks
u and d when, at the “quark epoch” (about over 10712 s till 10=%s, T > 10'2K), the quark—gluon plasma
experienced the phase transition, i.e., hadronization, which marked the beginning of the “hadron epoch” (about
over 10~®s till 1s, T > 10'° K). The current estimate of the hadronization temperature for light quarks [28] is
ch =156.5+1.5MeV =~ 1.8 x 1012K (“chemical freeze-out temperature”). Thus, with mags ~= m,

2r(X) m(X)c?

Tx ~ 1.8 x 10K ~ 5
X X 3 = ©)
Therefore, we obtain the estimates for quarks u and d:

r(u) ~ 108, r(d)~49. (6)

These values may be viewed as reasonable with regard to Assumption 1.

Moreover, the value of Tx in Equation (5) yields AdS curvature scags and lifetime T:
~ _h ~ -23 -1

kBTXNFl%AdSC_ = =T~ 27x10 S, %AdSNSfm‘ (7)

This AdS length scale s, ~ 8 fm is to be compared with the QGP typical distance scales, which exceed
the size of the largest atomic nuclei (and the low typical momentum scale) (in the Pb case, Rpp, =~ 5.3788 fm).

Assumption 3. The pure AdS curvature energy decouples from the rest mass energy at the critical hadronization
point and abides as a free component of the Universe along its posterior epochs.

5. Discussion

The conjectural interpretation we have proposed about the relation Epy(X) = 3histaqsc = %hw AdS
as the remnant of the AdS zero-point energy of the spin 1/2 elementary system X in the QGP period of
the early Universe, which immediately follows the dS inflationary phase like an “AdS bounce” (AdS
phase as anti inflation!) and which precedes the hadronization, requires of course a lot deeper analysis
in terms of QCD, thermal QFT, and phase transition. Note that a QCD vacuum density due to conformal
anomaly yields a Lorentz-invariant negative-valued contribution to the cosmological constant (see
the review [7] and references therein). Unfortunately, this effect is negligible in comparison with the
estimate in Equation (7). Moreover, the assumption of a AdS space-time should compel us to work
within the framework of consistent thermodynamics, QFT, and QCD in AdS and not in Minkowski,
a formidable program. Nevertheless, despite these drawbacks, one appealing aspect of our proposal is
the fact that it rests upon the experimental evidence of the phase transition from hadronic confinement
to QGP deconfinement, e.g., in CERN with SPS and LHC, or in BNL with RHIC and AGS (see [28] and
references therein). Understanding the structure and phases of the QGP state of matter is certainly one
of the main issues of modern nuclear physics.
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In this paper, we have advanced a guess about the emergence of dark matter based on some of the
most basic symmetry considerations, by exploiting ideas coming from previous works like [21,25-27].
One may imagine that in the primordial QGP period happening just after inflation the massive
constituents experience an effective geometric environment analogous to AdS during extremely
short periods, and that the total zero-point energy resulting from those AdS phases subsists after
hadronization. Like the cosmic microwave background (CMB) being a remnant from the recombination
epoch of the universe (= 379,000 years, at T ~ 3000 K), when protons and electrons combined to
form neutral hydrogen atoms, the dark matter would be a “relic” of the QGP epoch, totally free of
any interaction but the gravitational one. It is indeed tempting to establish a parallel between dark
matter and CMB, since the latter is viewed as the emergence of the photon decoupling, precisely when
photons started to travel freely through space rather than constantly being scattered by electrons and
protons in plasma.

Finally, I cannot resist quoting Bacry and Lévy-Leblond in [10]:

...it is amusing to notice that, in the Newton Universe N_, resulting from ¢ — oo contraction of AdS,
the kinetic energy of the elementary system on the quantum level, that is,

I 1
EN’ =~ |p? + —ZK2 , I = Newtonian inertia, K = Newtonian boost generator
T

kin 2
is quantized, which is not surprising in view of the “compactness” of the corresponding universe.
The oscillator levels have a separation 5Eg;1 ~ ht~1 in agreement with the uncertainty principle,
since T may be thought of as the “lifetime” of this oscillating universe.
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Abstract Financial and economic history is strewn with bubbles and crashes, booms and
busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably
one of the most important problems in economic theory. In this paper, we review recent
efforts to include heterogeneities and interactions in models of decision. We argue that the
so-called Random Field Ising model (RFIM) provides a unifying framework to account for
many collective socio-economic phenomena that lead to sudden ruptures and crises. We
discuss different models that can capture potentially destabilizing self-referential feedback
loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the
past, and that account for some of the phenomenology missing in the standard models. We
discuss some empirically testable predictions of these models, for example robust signatures
of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting pat-
terns. One of the most striking result, inspired by statistical physics methods, is that Adam
Smith’s invisible hand can fail badly at solving simple coordination problems. We also insist
on the issue of time-scales, that can be extremely long in some cases, and prevent socially
optimal equilibria from being reached. As a theoretical challenge, the study of so-called
“detailed-balance” violating decision rules is needed to decide whether conclusions based
on current models (that all assume detailed-balance) are indeed robust and generic.

Keywords Random field Ising model - Collective phenomena - Crises - Avalanches

1 Introduction

Traditional economics treats the aggregate behaviour of a whole population through a “rep-
resentative agent” approach, where the heterogeneous preferences of individual agents are
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replaced by average preferences curve. Agents are supposed to rationally determine their ac-
tion in isolation, with no reference whatsoever to the decision of others; in other words, in-
teractions between agents are usually neglected. The need to account for interactions seems
however quite compelling: imitation and social pressure effects must be responsible for the
appearance of trends, fads and fashion or mass panic, that would be very difficult to under-
stand if agents were really insensitive to the behaviour of others.! Financial markets—and
for that matter whole economies—are prone to crises and exhibit sudden discontinuities and
crashes, even in the absence of any violent exogenous event. The idea that some crises are
endogenously generated dates back to MacKay [1], Keynes [2] and Minsky [3, 4], with many
more recent apostles—see e.g. [5-10]. Collective effects can be the key to the success of a
brand, a book or a movie [11], or else of a new technology or a vaccination campaign. But
they can also be detrimental and do lead to major catastrophes when imitation cascades are
based on unreliable information or dangerous ideas, and when social pressure supersedes
rational thinking. In any case, social imitation often leads to distortion and exaggeration,
i.e. a decoupling between the cause and the effect, which in turn generates inequalities and
concentration (or “condensation”) phenomena, see Sects. 5.4, 7.1. These effects may grow
ever stronger in our Internet and social network dominated societies.

From a theoretical point of view, interactions may indeed lead to an aggregate behaviour
that is completely different from that implied by standard representative agent approaches
[12]. Catastrophic events and discontinuities can occur at the macro level, when the be-
haviour of independent agents would be perfectly smooth and featureless.> Models of col-
lective behaviour that illustrate those “surprises” on the way from micro to macro are of
course familiar to statistical physicists—with Van der Waals and Weiss as early heroes [13,
14]. Similar ideas started to develop in quantitative sociology in the seventies, with models
introduced by Schelling [15, 16] and Granovetter [17, 18] that are formally very close to
spin models of magnets (see below, Sect. 4.1). In fact, the analogy between magnetic po-
larization and opinion polarization was noted and formalized slightly earlier by a physicist
(Weidlich) in 1971 [19] who coined the word “Sociodynamics”, and slightly later by Galam,
Gefen and Shapir [20], in a manifesto for “Sociophysics”.

As it is well known, interactions can lead to multiple equilibria and ergodicity break-
ing, which in turn lead to very interesting effects like “punctuated equilibrium”, hysteresis
(or path dependence) and aging. These theoretical scenarios offer enticing metaphors for
understanding economic systems as well, in particular the emergence of trust, norms and
conventions. After all, a prosperous economy can only be achieved through efficient coordi-
nation and collaboration. Although anticipated by Keynes and pioneered by Follmer in 1974
(again in the context of spin models! [21]), these ideas only really permeated into economics
in the early nineties, partly nurtured by the Santa Fe meetings “The Economy As an Evolving
Complex System” [22, 23]. As Kirman (1992-93) was forcefully arguing against the repre-
sentative agent framework [12] and proposing his ‘ant’ recruitment model [24], Brock and
Durlauf wrote a series of remarkable papers [25-28] using statistical mechanics methods to
elicit the importance of social interactions in economics, emphasizing that the utility or pay-
off an individual receives depends directly on the choices of others.> Although not yet fully

1 As a recent anecdotal, but pittoresque piece of evidence: the explosion of “love-locks” on the Pont des Arts
in Paris since 2008.

2The converse is in fact also true: discontinuous behaviour at the agent level may end up being smoothed out
at the macro level!

3See also the earlier insightful paper by Becker [29].
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mainstream, the field of “social dynamics” is now well appreciated* (see the books [30, 31]
for enlightening discussions, [32, 33] and references therein for another strand of literature
on “herding” effects; see also [34]). In parallel, physicists have actively contributed to the
field, with a variety of models for coordination, contagion, opinion formation, segregation,
herding, etc.—see e.g. [35-38] for recent overviews of these endeavours.

The present paper is intended to be a personal, somewhat informal review, centred around
the use of Random Field Ising models (RFIM) as a generic model for crashes, opinion swings
and discontinuities in a socio-economic context. The RFIM provides a unifying framework
and an enticing “story” for many disparate collective phenomena, including overnight trust
evaporation such as that which occurred after Lehman’s bankruptcy in 2008, or the persis-
tence of cultural traits or habits, even when damaging for the community.® Interestingly,
some of the predictions are robust and can be quantitatively tested against data. We then dis-
cuss some theoretical limitations of the simplest (mean-field) version of the model. Three
issues are, to our way of thinking, particularly relevant. One is the importance of history
and memory in the preference of individual agents, in the absence of any interaction ef-
fects (this is called habit formation or “stickiness”)—see Sect. 7.1. Another is the use of
decision making rules (or selection probabilities) that have become standard in the above
cited literature, and that amount to assuming what is called detailed-balance in the physics
jargon—see Sect. 6.2 for a precise definition. How much non detailed-balance rules would
affect the qualitative features is very much an open problem (Sect. 6.2). The third one con-
cerns spatial effects, that should play a major role in some cases, as illustrated by election
turnout statistics (Sect. 5.3). Finally, we cursorily discuss alternative (or rather, complemen-
tary) models of crashes and regime shifts based on feedback loops between past events and
current decisions (Sects. 7.2, 7.3).

Many ideas in this paper have been “long and widely known”. Howeyver, they are only
well known to those who know them well. Our experience is that even simple ideas may have
a hard time permeating into other communities (the adoption models presented below could
even be used to explain why! [39]). Sometimes, a detailed translation helps. We hope that the
present paper can serve this purpose and be a helpful exposition, in particular for students
in physics and in economics interested by the issue of crises and collective phenomena.

2 A Generic Binary Choice Model: The Random Field Ising Model
2.1 Set up of the Model

The so-called ‘Random Field Ising Model’ (RFIM) was proposed to model hysteresis loops
and other anomalous properties of disordered magnets [40, 41]. The hysteresis loop problem
is an example of a collective dynamics of flips (the individual magnetic spins) under the
influence of a slowly evolving external solicitation. Depending on the parameters, the flips
may take place smoothly, or be organized in intermittent bursts, or ‘avalanches’, leading to
a specific acoustic pattern called Barkhausen noise. But because the model is so generic,
it can be used as a simplified model for a host of other physical situations as well, such
as earthquakes, fracture in disordered materials, failures in power grids, etc. These systems

4The paper Discrete choice with social interactions by Brock and Durlauf [28] has 1034 Google scholar
citations at the time of writing.

SThink for example of the tax-evasion culture in some countries, that has recently become an acute issue.
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respond to the driving in a series of avalanches spanning a broad range of scales, which
Sethna, Dahmen and Myers (2001) proposed to call “crackling noise” [42].

As was originally proposed in [20, 43], the model can also be transposed to represent
binary decision situations under social pressure, and influenced by some global informa-
tion (such as the price of a product or the quality of a technology) or by zeitgeist. This
transposition was recently discussed in several socio-economical contexts in, e.g. [44—49]
(see [50-53] for variations on the theme). The model has a rich phenomenology. In partic-
ular, discontinuities appear in aggregate quantities when imitation effects exceed a certain
threshold, even if the external solicitation varies smoothly with time. In this situation, the
aggregate demand is a multi-valued function of the price [45]. Below the threshold, on the
other hand, the behaviour of “demand”, or of the average opinion, is smooth, but the natural
trend can be substantially amplified and accelerated by peer pressure, possibly leading to
sudden crises.

We will assume that each agent i is confronted to a binary choice, the outcome of which
is denoted by S; = —1, 1. This binary choice can be to vote or not to vote, or to vote yes or
no in a referendum; it can be to buy or not to buy a certain good [45-47], to evade tax or not,
to clap or to stop clapping at the end of concerts, etc. [48]. Textbook examples in sociology
are to attend or not to attend a seminar [15, 16], to join or not to join ariot [17, 18] or a strike
[20], to go or not to go to the crowded El Farol bar [35, 54]. Of course, examples can be
multiplied ad libitum. We wish to add two more in view of their importance: one is to trust
or not to trust. This encompasses a large number of situations that recently made the news:
credit markets and credit ratings; trust in future economic prospects; trust in the validity of
the models used to value derivative products [51]; trust in the value of money itself, etc. The
second is adopting or not an environment friendly technology (i.e. solar heating) which is
individually costly but collectively valuable. This is closely related to the famous “tragedy
of the commons” [55] wherein individual short term interest is in conflict with long term
collective welfare.

It is reasonable to assume that the decision of agent i depends on three distinct factors:

(i) His personal inclination, preference or “willingness to pay/adopt”’, measured by a real
variable f; € (—oo, +00) which we take to be time independent (but see Sect. 7.1) and
distributed according to a certain p.d.f. p(f). Large positive f’s means a strong a priori
tendency to decide S = 1, and large negative f’s a strong bias towards S = —1.

(ii) Public information, affecting all agents equally, such as objective information on the
scope of the vote, the price of the product agents want to buy, the balance sheet of the
banks, the advance of technology, etc. The influence of this time dependent common
factor will be called the incentive field F(¢), again a real variable in (—o0, +00).

(iii) Social pressure or imitation effects; each agent i is influenced by the previous decision
made by a certain number of other agents j in his “neighbourhood”, V;. The influence
of j oni is taken to be J;;S;, that adds to f; and F. If J;; > 0, the decision of agent j
to buy (say) reinforces the attractiveness of the product for agent i, who is now more
likely to buy. This reinforcing effect can obviously lead to an unstable feedback loop,
as discussed in Sect. 4.2. If on the contrary J;; < 0, the action of agent j deters agent i
from making the same choice. This “anti-conformist” or contrarian tendency, although
rarer in human nature, can sometimes exist and be relevant. For example, buying can
push the price up and discourage others from buying themselves. When both signs of
Jij coexist, one expects many metastable states with a very rich dynamics, see e.g. [56].
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2.2 Decision Rules

To sum up then, the overall perceived incentive U; of agent i to choose 41 over —1 is

Uit)=fi+ F() + Y _ JiiS;(t = 1). e
JEVi
Now one has to specify a decision rule, given a certain value of the total incentive. The
simplest rule is:

Si (1) = sign[U; (1) — Un], ()
meaning that the decision to “buy” is reached whenever the incentive U; reaches a certain
threshold value Uy, which can be chosen without loss of generality to be zero.°

However, the above decision rule is perhaps too deterministic and restrictive. One may
imagine that agent i could not pay attention to or misread the public information (which is
often intrinsically ambiguous and hard to interpret) or else have a random, time dependent
component in his preference (a sophisticated way of saying people can be fickle).” A more
general rule that is a standard in the choice/decision making literature (see Sect. 6.1) is the
so-called “logit rule” or “quantal response” which makes the decision a random variable,
with probability:

P(S;=+1:U)) = 5 P(S==1:U)=1-P(S=+LU), O

+ e AU’
where B is a parameter that specifies the amount of noise (or “irrationality”) in the decision
process, and is the analogue of inverse temperature in physics. When 8 — 0, incentives
play no role and there is a random 1/2, 1/2 probability of the two decisions, whereas when
B — 00, one recovers the deterministic rule given by Eq. (2).

It is in fact very natural to generalize slightly the above rule to keep some memory of the
previous decision and allow for possibly time dependent incentives:

u
PSit= 1Sil—1=_1;Ui=—’
(8:(0) = 118, = 1) )= o “
In
P(S;t)=—-11S;¢—1)=-1U;)=1— ————,
(Si()=—1185:¢: = 1) )=l
and
P(Sit)=—1ISi(t — ) =+1; U}) = ——
1+ ePUi )
I
P(S;t)=4+1|S;¢—1D)=+1U;) =1 — ————.
(SO =+1IS( =D =+1:0)=1- L

The coefficient & < 1 can be interpreted as a probability to reconsider one’s past choice
between ¢ — 1 and . When u = 1, all memory is lost and one recovers the previous rule
Eq. (3).

These decision rules might at this stage appear as somewhat arbitrary, and guided by the
fact that they will allow one to use directly Boltzmann-Gibbs measure and use results from
statistical mechanics. We will comment on those rules below (Sects. 6.1, 6.2)—although
considerable effort has been devoted to axiomatize decision theory [57], we feel that there
is indeed some leeway here that might lead to interesting problems for future research.

6Any other i-dependent value could have been chosen, since this simply amounts to shifting the value of
idiosyncratic field f;.

TThe distinction between the two interpretations will be discussed again in Sect. 6.1.
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2.3 The Mean-Field Limit

If all J;; > 0, the above model is known in physics as the Random Field Ising model at
temperature 7 = 1/, and has been intensively studied in the last decades, in particular
at T =0 (see e.g. [40, 41, 58, 59]). In physics, natural networks of connections are d-
dimensional regular lattices, but other topologies, more natural in a socio-economic context
such as the fully connected case, regular trees or random graphs have been studied as well.
The qualitative phenomenology however does not depend much on the chosen topology,
nor on the distribution of idiosyncratic fields p(f), although quantitative details might be
sensitive to these specifications. For simplicity, and in line with many previous papers [19,
20, 28, 4548, 60] we will thus mostly restrict attention here to the “mean-field” case where
Jij = J/N, Vi, j pairs. This does not mean that each agent consults all the other ones before
making his mind, but rather than the average opinion m = N~' )", S;, or total demand,
becomes public information, and influences the behaviour of each individual agent. This is
in fact a very realistic assumption in many cases: for example, the total sales of a book,
or number of viewers of a movie, is certainly an important piece of information for the
consumers. It is also thought that the evolution of the public opinion can be affected by polls
or by confidence index, i.e. by a proxy of the average opinion [61-64], and, indeed, this is
the reason for certain countries banning opinion polls shortly before elections. In the case of
financial markets, the price change itself can be seen, on a coarse-grained time scale, as an
indicator of the aggregate demand (although the detailed relationship between the two might
be quite subtle, see [65, 66]). While this mean-field description may be very reasonable in
certain settings, one expects that network/local effects may be relevant in other cases, for
which the neighbourhood of agents is restricted to a more specific community. This locality
might actually change quite a bit the features of the model (see Sect. 4.2).

We now turn to an analysis of the RFIM model in different limits, and try to summarize
the salient results and their interpretation in a socio-economic context.

3 The Case of a Homogeneous Population: The Ising-Weidlich Model
3.1 Dynamical Equations and Equilibrium

Let us start by analyzing the case where f; = f, Vi. Up to a shift in the public information
field F, one can always set f = 0. There are N >> 1 agents, and at time ¢, the fraction
of them who have chosen the § = +1 alternative is ¢ = N, /N. In the mean-field limit
Jij = J/N, the total incentive to choose +1 over —1 is simply:

U=-C+2J¢p, C=J-F. (6)

If we speak of adopting individual solar heating, for example, C can be interpreted as the
immediate cost of installing a new heating system, whereas the term 2J ¢ encapsulates both
the expected cost decrease and technical improvements as more people shift to the new tech-
nology, and the social pressure that makes it “politically incorrect” to stick with hydrocarbon
greedy devices.

Now, we use the dynamical updating rules given by Eqs. (4) above, and set z = Y.
It is easy to show that the following probabilities hold for the evolution of the number of
‘adopters’, N, between ¢ and ¢ + 1:8

81t is interesting to notice that in Kirman’s ant recruitment model [24], one rather has P(N;. — Ny + 1) =
P(Ny — Ny — 1) = nu¢(1 — ¢) because change of opinions are supposed to happen during two-body “en-
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z 1
P(N+—>N++1)=#m(1—¢); P(Ny > Ny —D)=p—9,

1
+z 7)
PN, > N)=1-—"[z460-2)]
1+z
From the above, one gets the evolution of the average (N ) and the square-average (N?):
N. —(Ny), = 8
(Np)p1 — (Ny) = [1+Z ¢} (®)
and
d-¢)z+¢
2 N2) =
W2 = 72}, =200 | =0+ EBEEE ©

These equations were obtained in the present sociological context by Weidlich [60], but are
of course very standard in the context of the mean-field Ising model.

Taking p = dt infinitesimally small for convenience, and comparing with the predictions
of the following It6 stochastic differential equation:

dN, = F(p)dr + X (¢)dW (10)
(where dW is the usual Brownian noise) one finds, by identification:

, s =)+
1+ —¢ PP = (11

In order for this equation to be well behaved in the large N limit, a change of time scale
must be performed as 7 = /N (meaning that over a finite change of 7, a finite fraction of the
population has been offered the possibility to switch). This finally leads to:

dp = F(¢) di + 2@ 4. (12)

Nt
From now on, we will drop the tilde. Note that the scale of the noise goes down as 1/ N
with the population size.

The “equilibrium” state(s) of the system are such that (d¢) = 0, i.e. ¢* such that F(¢*) =
0, leading to:

F¢) =

Z*

I+z*
Setting m = 2¢ — 1, one recovers (as expected) the standard Curie-Weiss mean-field equa-
tion, re-derived by Brock and Durlauf [28] in the present framework:’

, =P, (13)

¢ =

m*52¢*—1:tanh[§(1m*+F)]. (14)

The solutions of that equation are well known. When F' = 0, there is a critical value 8, =
2/J separating a high noise regime B < . where agents shift randomly between the two
choices, with ¢* = 1/2. As first noted by Weidlich [19], a spontaneous “polarization” of
the population occurs in the low noise regime 8 > B, i.e. ¢* # 1/2 even in the absence
of any individually preferred choice (i.e. F = 0). When F # 0, one of the two equilibria is

counters” where one of the two convinces the second one to change his mind. In the present setting, encounters
are not necessary.

9Note that there our choice of J differs by a factor 2 from the usual convention.
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exponentially more probable than the other, and in principle the population should be locked
into the most likely one: ¢* > 1/2 whenever F > 0 and ¢* < 1/2 whenever F < 0. In the
limit B — oo, the above equilibrium analysis suggests that as soon as F > 0 (i.e. when
the adoption cost C is less than J), the whole population should move towards the “right”
equilibrium ¢* ~ 1.

Unfortunately, the equilibrium analysis is not sufficient to draw such an optimistic con-
clusion. A more detailed analysis of the dynamics is needed, which reveals that the time
needed to reach equilibrium is exponentially large in the number of agents, and as noted by
Keynes, in the long run, we are all dead. This situation is well-known to physicists, but is
perhaps not so well appreciated in other circles—for example, it is not discussed in [28].
This is the main message of the present section, which would otherwise not be much more
than a textbook exercise.

3.2 Potential Barrier and Metastability

Define a potential function V(¢) such that 7 = —dV/d¢. Up to an irrelevant additive con-
stant, one finds

2
The analysis of V(¢) is easy in the limit § >> 1. Since ¢ is € [0, 1], one finds that as long as
| F| < J the potential has two minima situated, as expected, very close to ¢ =0 and ¢ = 1.
The difference V(¢ = 1) — V(¢ = 0) is equal to —2F meaning, as explained above, that the
¢* ~ 1 equilibrium is indeed favored when F > 0. But there also appears an energy barrier
between the two minima, situated at ¢n.x = (1 — F/J)/2, which makes it hard for the
system to crossover from the “bad” minimum to the “good” one. Using the above Langevin
equation, Eq. (12), one finds that the time 7 needed for the system, starting around ¢ = 0, to
reach ¢* ~ 1 is given by:

T xexp[AN(1 — F/J)], (16)

where A is a numerical factor. The important point about this formula is the presence of the
factor N(1 — F/J) in the exponential. This means that whenever 0 < F < J, the system
should really be in the socially good minimum ¢* & 1, but the time to reach it is exponen-
tially large in the population size. In other words, it has no chance of ever getting there on its
own for large populations. Only when F reaches J, i.e. when the adoption cost C becomes
zero will the population be convinced to shift to the socially optimal equilibrium—simply
because ¢* ~ 0 is not a minimum anymore (note indeed that ¢y.x — 0 as F — J).

As B decreases towards S, (i.e. as the noise in the decision process increases), the two
minima ¢ get closer to each other and the barrier between then gets smaller, until hysteresis
and polarization effects disappear altogether.

Let us summarize what happens in a situation where the cost C of adopting a new tech-
nology, a new idea, or a socially beneficial attitude, decreases steadily as a function of time
in our (so far) homogeneous population. When individual make near-optimal choices, the
population as a whole will not adopt until C = 0, even if it would be optimal for the com-
munity as a whole to adopt as soon as C < J—it would actually do so if one was prepared
to wait an exponentially long time. As a function of time, one should see an extremely small
number of adopters until the cost drops to zero, in which case the whole population finally
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shifts to the new paradigm. This is very different from the standard model of innovation dif-
fusion, based on the following simple differential equation proposed by Bass in 1969 ([67],
and for a recent illuminating review [68]):

9 1 17

T =ne(1 -9, 17
which says that the speed of adoption first increases with the number of people who have
adopted. This equation leads to the famous “S-curve” for adoption. It predicts that the adop-
tion speed is maximum when ¢ = 1/2, at variance with the above scenario where the adop-
tion speed abruptly increases when ¢ is still quite small. Note however that the discontinuity
in time should be smoothed by the speed at which information about the behaviour of others
is spreading; but when applied to financial markets, for example, this time can indeed be
very short.

What are the solutions to escape from the “bad” equilibrium as soon as it becomes collec-
tively profitable to move to the “good” one? Clearly, this is a coordination problem, which
becomes hard to solve when N is large. Apart from lowering the cost C, the model above
suggests at least three possibilities to make the barrier easier to cross: (a) increase the vari-
ance term X by coordinating the moves (instead of having independent decisions): this can
be done through advertising campaigns, word of mouth, etc.; (b) decrease g, i.e. increasing
the noise, for example when the information about the true costs is ambiguous; (c) decrease
N, i.e. the number of people in direct interaction—people do not adopt because nobody else
adopts. In physics, the existence of mutually inaccessible minima with different potentials
is a pathology of mean-field models that disappears when the interaction is short-ranged. In
this case, the transition proceeds through “nucleation”, i.e. droplets of the good minimum
appear in space and then grow by flipping spins at the boundaries. This suggests an inter-
esting policy solution when social pressure resists the adoption of a beneficial practice or
product: subsidize the cost locally, or make the change compulsory there, so that adoption
takes place in localized spots from which it will invade the whole population. The very same
social pressure that was preventing the change will make it happen as soon as it is initiated
somewhere.

Before leaving the homogeneous Ising-Weidlich model of this section, we would like to
note that the solar heating example is in fact not be the best one, because the dynamics of
the model assumes that choices are to some extent reversible, i.e. each agent can in principle
flip back and forth between the two options. While this is clearly the case for opinions,
tax-evasion, safe driving, trust, etc., it is harder to imagine that agents can easily switch
between solar cells and heating oil—at least on short enough time scales to make the above
description useful. The model in the next section is actually better suited for such irreversible
choice situations.

4 The Role of Heterogeneities: Scaling and Avalanches
4.1 The Zero-Temperature RFIM and Classical Models of Adoption

Let us now come back to the idea that agents are not clones and have different preferences
or willingness to pay f;, distributed according to a certain p.d.f. p(f). The case where
social pressure is absent, i.e. J;; = 0 is very simple to analyze when g — co. Call P_(f) =

/ _f o dxp (x) the cumulative distribution of f;, i.e. the probability that f; < f. The aggregate
demand, or average opinion m for a given incentive field F(#) = F is easily obtained as:

mo=—P-(~F)+ (1 = P-(~F)) = 1 =2P_(~F). (18)
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Fig. 1 Average opinion, or 1.0 —=—
aggregate demand, or overall
trust (etc.) m, as a function of the :
external incentive field F(¢) in

Average opinion

the RFIM. For an imitation 05k |
parameter J < J., the curve is .

smooth. But when J > J. a N,

hysteresis effect appears with two J<Je

possible stable states for the same ‘

value of F, plus one unstable 0.0r A 1
state. As F decreases the overall

trust remains high even for ’

negative values of F', before

suddenly collapsing at —F(J) to ~05 .

the lower branch (as indicated by

the arrow). The hysteresis effect J>J,

means that trust can only

reappear if F grows back beyond

+Fc(J), i.e. much beyond the -1 ~910 = 0 — 10
value where the crash happened Polarisation field F(t)

(The subscript 0 means that J = 0 here.) As F(¢) increases slowly from —oo to +o00, the
average opinion evolves from —1 to +1 in a way that mirrors exactly the distribution of a
priori opinions in the population. For a generic distribution of f; (for example, Gaussian),
the opinion evolves smoothly as the polarization field is increased—see Fig. 1, blue line.
If one interprets F as minus the price p of a product, and f; the price at which an agent
is happy to buy, the total demand curve d = (m + 1)/2 is clearly equal to the number of
buyers, i.e.

o0

d(t)=N(1 —P<(p(t)))EN/()dxp(x), (19)
p(t

which increases as the price decreases. For a unimodal distribution, d(¢) will look like a

smooth “S-curve” as the price decreases, or as the quality of the product increases. This is

called the “moving equilibrium” model in the innovation diffusion literature [68].

The situation can change drastically when imitation is introduced. We keep here to a
mean-field coupling to the average opinion, and comment on the robustness of the results
later, Sect. 4.6. This global feedback effect simply shifts F' to F + Jm, leading to a self-
consistent equation:

m*=1=2P_(—F —Jm*). (20)

The threshold model of Schelling and Granovetter [15-18] is a particular case, although
usually expressed slightly differently. As above, call N, the number of agents deciding to
attend a seminar, or join a riot, etc. Each agent has a preference expressed as a conformity
threshold: if the observed number N, exceeds an i-dependent number that we set as N (1 —
f3), then agent i joins as well the next time round.'? This leads to a dynamical equation of
the form:

S . Nos
¢t+1=/ Afp(H)=1-P.(1=g), withg, =~ 1)
1—¢¢

10, agreement with the above convention, f; large means that agent i is more prone to join, i.e. his threshold
is lower.
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The “equilibrium” value is given by the fixed point solution ¢* =1 — P_(1 — ¢*) which
coincides with Eq. (20) with J = —F = 1/2. Equation (20) contains F as an extra degree of
freedom, which allows one to treat both conformity and the moving equilibrium idea when
F is time dependent. Note that when all J;;’s are positive (which is the case of the mean-field
model), decision changes are ‘irreversible’ when F (¢) has a monotone evolution in time. In
other words, if S; flipped from —1 to +1 at a certain moment in history, it will never flip
back to —1 later. This would not be true in the much richer (and more complicated) case
where J;; can take both positive and negative signs.

4.2 Imitation vs. Heterogeneity

Coming back to Eq. (20) when imitation is weak enough, one can expand the right hand side
in powers of J, leading to first order to:

1 —2p(F)J°

This equation shows that the point where the slope of m( vs. F is maximal coincides (for
symmetric distributions) with the point where the speed of variation of opinion changes is
maximally amplified: imitation leads to exaggeration. As imitation becomes stronger, the
above perturbative expansion breaks down. Still, the maximum slope of m* vs. F increases
and finally diverges for a critical value J = J., beyond which m* is a discontinuous function
of F (see Fig. 1, red line). Much as in the previous section, the self-consistent equation (20)
has, for a range of F, three solutions for m, one of which being unstable (see Fig. 1). In an
economic context, it means that the demand for a product can be a multi-valued function of
price, i.e. the possible coexistence of a high demand and a low demand solution for the same
price. This has been fully investigated in [45-47].

The solution chosen by the system depends on history. Suppose one starts with F' = —oo
and m = —1 (zero demand), and slowly increases F to make the alternative choice more
appealing. The average opinion will first follow the lower branch until it jumps discontinu-
ously to the upper branch, for a certain threshold field F,.(J) (and symmetrically on the way
back, at —F,.(J), as the field is decreased). Although Fig. 1 is qualitatively similar to the
results of the previous section (which formally corresponds to o = 0, where o is the width
of the distribution p(f)), there are many crucial differences. For example, the m* jump am-
plitude is not equal to 2 but depends continuously on J even when 8 — 0o, and vanishes
when J — J* as (J — J.)P, where B = 1/2 in mean-field or on tree-like graphs. Another
difference is that the dynamics between F' = —oo and F.(J) when the jump occurs is made
of avalanches of different sizes, which we will discuss in Sect. 4.4 below. A third difference
is the existence of many more “equilibrium states”, beyond the ones corresponding to the
protocol that we describe here (i.e. F = —oo and all spins down at ¢ = 0). Other states can
be reached, for example preparing the system with m =0, F' = 0 one will follow a totally
different hysteresis loop as F is increased. This “sensitivity to initial conditions”, or strong
history dependence, makes the model quite appealing.'!

What sets the critical value J, of the interaction parameter beyond which strong herding
effects occur? Dimensional analysis immediately implies that J. = Ac where A a numeri-
cal constant (perhaps infinite) that depends on the detailed shape of p(f), and also on the
topology of the graph. This means, as intuitively expected, that jumps and collective frenzy

*

(22)

' These effects, strictly speaking, disappear in finite dimensional lattices because of nucleation. But the time
scales associated with nucleation may be so large that these metastable states still have a real existence.
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happen more easily in homogeneous populations (low o) than in strongly heterogeneous
populations. Stability (of markets, democracies, ...) requires diversity. For the mean-field
model with a Gaussian p, A = +/27 ~ 2.5. If the graph is a regular tree, then A < co when-
ever the number of neighbours is > 4 [58, 59], but the transition disappears for a tree with 2
(i.e. a line) or 3 neighbours. For these little connected lattices, interaction effects are never
strong and there is no hysteresis phase. On a two-dimensional square lattice with each bond
of strength J, the threshold is J. &~ 1.560 [69] and J,. &~ 0.46¢ for a three-dimensional cubic
lattice [41] (both for a Gaussian p(f)).

4.3 Critical Scaling

The vicinity of the critical point J < J, reveals interesting critical properties, to a large
extent independent of the detailed form of p(f). Noting ¢ = J. — J the distance from criti-
cality, one finds that the opinion slope S = dm /dF takes a scaling form in a relatively wide

region around of F.(J) [41]:
S= 1 G F;F‘(J) (23)
T e £3/2 ’

where the function G(x) can be computed explicitly [48, 70], and is universal. In particular,
G(0) is a finite constant and G(x — 00) ~ x~%/3. Equation (23) means that the slope, as a
function of F, peaks at a maximum of order £~! and remains large on a small window of
field of order w ~ £32. In other words, the height % of the peak behaves as an anomalous
power of the width w™ with x = 2/3. This is strikingly different from what is expected
for any regular model, like the moving equilibrium model (J = 0), for which # ~ 1 /o and
w ~ o, leading to k¥ = 1. Interestingly, this leads to testable predictions, which only rely
on the assumption that the external incentive field F is a smooth function of time—see
Sect. 5.1.

4.4 Avalanches

If now one ‘zooms’ on finer details (on scale 1/N) of the curve m*(F) in the vicinity of
J = J., one discovers a very interesting structure. One finds that the evolution of m* is
actually resolved in a succession of ‘avalanches’ of different sizes s, where the first opinion
change induces (through interactions) a second one, then a third one, etc. After the sth one
has flipped, the system is stable again, in the sense that for the current value of F all S;’s
agree with the sign of the total incentives U;.

The statistics of the avalanches is in fact easy to understand in mean-field, because the
dynamics maps into the well known critical branching process. When one agent flips from
S; = —11to §; = +1, it induces a change of incentive AU = 2J /N for all other agents. For
a given value of F and m*(F'), the agents that are on the verge of flipping have a preference
fi precisely equal to —F — Jm™*. The average number of flips induced by the first one is
thus given by [70]:

n=Np(—F — Jm*) x %J (24)
Each of the newly converted agents can convert on average n new ones, etc. In mean-field,
this is equivalent to the Galton-Watson branching process with branching ratio n [71]. It is
well known that when n < 1, avalanches are all of finite size, whereas when n > 1 some
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avalanches will diverge and sweep the whole system. In the region of n < 1, the distribution
of avalanche sizes is a truncated power-law:

P(s) 0y 5320, 25)

Now, let us explain why n = 1 corresponds to the critical point J = J., F = F,. Equa-
tion (20) can be written m* = G(m*), with G(m) =1 —2P_(—F — Jm). One thus sees that
the function G (m) must cut the first diagonal once for J < J. and three times for J > J..
The point J = J. must correspond to the case where G (m) is fangent to the first diagonal at
the point of crossing. Therefore, at the critical point,

G'(m*)=2Jp(—F — Jm*) =1, (26)

which is indeed equivalent to n = 1 (see Eq. (24)). Interestingly, exactly the same scenario
occurs in the so-called Fiber-Bundle model for fracture [72, 73], which is very close in spirit
to the above models. In a nut-shell, the Fiber-Bundle model assumes initially N intact fibers
in parallel, subject to an external force NF that is equally distributed over all fibers. Fibers
are heterogeneous, and when the force acting on the ith one exceeds a certain threshold 6;,
the fiber breaks and the external force is redistributed over all remaining fibers. It is clear
that the fraction ¢ of intact fibers obeys the following self consistent equation:

o F
o= do p(0) = P>(—), 27)

Fo* o*
where p(0) is the distribution of fiber strengths. For F < F_, the above equation has gener-
ically two solutions that merge for F' = F, and disappear for F > F, (i.e. the bundle breaks
apart). Again, when F = F, the function P>(%) has a slope equal to one at ¢*. The same

analysis as above can be carried over for the avalanches in this model as well.'?

This analysis offers an enticing microscopic picture of how large opinion swings actually
develop in a population: as a branching process that generates avalanches. Most of them are
small, but some may involve an extremely large number of individuals, without any partic-
ularly large change of external conditions (i.e. change in F(¢)). The power-law distribution
that appears is tantalizing and might enable one to understand why bursts of activity and
power-laws appear in the distribution of returns in financial markets, for example. But there
is at present no convincing argument that would make this analogy sharp.

4.5 Delays and Trends

The above analysis assumes that the external incentive field F'(¢) varies extremely slowly,
so that the state of the system can follow adiabatically the equilibrium condition (20). It
may be useful to generalize the model to include lag effects, and to write the following time
evolution equation [68]:

dm*

— =u[l =2P(=F(t) — Jm*) —m*], (28)
where 11~! defines an equilibration time scale, i.e. the time needed for agents to adapt to the
new piece of information that changed F (¢). If u~' is very short compared to the evolution

12The exponent —3/2 in the avalanche size distribution is the same as the one appearing in the first return
time distribution of a one-dimensional random walk. Indeed, the critical branching process can be mapped
onto that problem, see [72, 74, 75] for more elaborations on this point.
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Fig. 2 Qualitative phase c 4
diagram, in the plane

(T =1/B,0), of the mean-field
RFIM. The model in Sect. 3.1
corresponds to the x-axis

(0 =0), whereas T = 0 RFIM of
the present section corresponds
to the y-axis. The aggregate Jumps (SG) !
behaviour is smooth above the A
thick line boundary, but exhibits /
jumps and hysteresis below. An
even more complex ’
Spin-Glass-like phase, with an 4

exponentially large number of ,/
metastable states, appears to the 4

left of the dotted line (see [76] /
for more details) .

T=1/B

time of F(t), we are back to the previous analysis. Otherwise, lag effects matter and could
for example affect the avalanche size distribution P (s) for large s.

Another potentially interesting generalization is to include the influence of past trends.
People are not only sensitive to the contemporaneous behaviour of others, they also take cues
from past patterns. An obvious candidate is the speed at which m* has varied in the past,
which may give a sense of urgency and adds to the external incentive F (). The simplest
model that encodes this would be Eq. (28) with F(¢) replaced by:

t *
F(t)— F(t)+g [ dr’ e—”’—”di, (29)
0 dr’
where I"'! is the time scale over which the past trend is computed and g the strength of
the coupling to past trends. This could be an interesting model for the dynamics of financial
markets, similar to the one discussed in Sect. 7.3. Other examples of feedback between past
history and present decisions will also be reviewed there.

4.6 Phase Diagram for Noisy Decisions

Before moving to more quantitative evidence for the type of effects that the RFIM is sup-
posed to capture, it is important to end the present section with a discussion of the role
of the coefficient 8 = 1/T in the decision rules. Up to now, we considered that 8 = co—
i.e. decisions are ‘rational’ and conform to the overall incentive, S; = sign[U;]. Introducing
some amount of noise does not immediately destroy the above picture: for a given imitation
strength J, there is still a critical value o.(T') of the heterogeneity below which jumps occur
and above which the demand curve becomes smooth. Similarly, for a fixed o, jumps remain
until decision noise becomes larger than a o-dependent value 7,.(o) (i.e. for 8 smaller than
B. = 1/T,). The situation is summarized in Fig. 2, which shows the region of the (7, o)
plane where jumps and hysteresis occur, located below the red line. Above that line (i.e.
where heterogeneities and/or noise are strong enough, there is a single equilibrium and a
unique demand/opinion curve). The model in Sect. 3.1 corresponds to the x-axis of this
graph (o0 = 0), whereas the results of the present section correspond to the y-axis (T = 0).
From the point of view of potential applications of the model, it is reassuring to see that
the whole scenario predicted by the RFIM, and in particular the transition between a “crisis”

@ Springer



Crises and Collective Socio-Economic Phenomena 581

phase and a smooth phase, is quite robust against details (noise, network topology, shape of
the probability distribution of preferences, etc.).!> Finally, note that there is a second, green
line in Fig. 2 [76], separating a regime of strong history dependence where the number of
equilibrium states is exponential in the number of agents and hysteresis sub-loops are stable,
from a phase that is more similar to what happens in the homogeneous case o = 0, with a
single (large) hysteresis loop.'

4.7 Summary

In summary, the transposition of the RFIM to opinion/demand formation predicts that the
average opinion evolves, as a function of the global solicitation, very differently if imitation
effects are weak (in which case the evolution is smooth) or if imitation exceeds a certain
threshold, in which case aggregate quantities are discontinuous and catastrophic avalanches
may be triggered. More quantitatively, the model predicts that in generic situations, the speed
of change should peak more and more as the critical point is approached. As a function of
time, the speed of change exhibits a maximum of height 4 and of width w, the two being
related by & ~ w~%/3. This is very different from non-critical adoption models, such as the
“moving equilibrium” model, for which 4 ~ w™". These predictions seem to be qualitatively
and even quantitatively relevant in several instances that we describe in the next section.

5 The RFIM Scenario: Empirical Evidence and Possible Applications

It is now a rather well established fact that people do not make decision in isolation but
rely on the choice/opinion of others, see [79, 80] for a detailed discussion and many ref-
erences. Recent work includes in particular the artificial culture market of Salganik et al.
[81], the analysis of earning forecasts by expert analysts [82], or the wisdom of crowds [83].
Of course, anecdotal evidence concerning famous financial bubbles (like the tulip-mania in
Amsterdam and other examples of ‘madness of crowds’ [84]) or famous fads & fashions
(like Louis XIV’s wig, Catherine de Medicis’ forks and Richelieu’s rounded knives, etc.)
make it quite obvious that social pressure can be disturbingly dominant. Keynes conceived
imitation (herding) as a response to uncertainty and to the recognition of one’s own igno-
rance: people follow the crowd because they think (or fear) that the rest of the crowd might
be better informed.!®> Gigerenzer provides a complementary interpretation [85, 86]: people
tend to follow rules of thumb and routines. Imitation qualifies well as a ‘fast and frugal’
heuristic, which furthermore has minimal information costs. However, a recurrent problem
has been to disentangle effects induced by direct imitations or social pressure from correla-
tions that would appear just because people have the same information or the same cultural
bias, etc. [87].

5.1 Some Quantitative Evidence

In that respect, the robust prediction of the RFIM alluded to in the previous section allows
one to test for the existence of herding effects with minimal extra assumptions. This is the

3 This universality was also noted and emphasized in [46, 47].
14For other recent examples of agent based models with an exponential number of equilibria, see [77, 78].

]5Peyton Young in [31] contrasts instrumental conformism, when it is beneficial to do what others do, to in-
formational conformism, when we conform to what others do because it conveys information on best actions.
The problem, we believe, is that often nobody really has any idea of what’s going on, so the “information”
provided by the others actions is close to zero.
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Fig. 3 Left: Height of the peak A, vs. width of the peak w, in a log-log scale, both for birth rates and for cell
phones, for different European countries (see [48]). A best fit leads to a slope (in log scale) of, respectively:
—0.71£0.11 and —0.62+0.07. The mean field RFIM critical prediction & ~ w—2/3 is shown for comparison.
Right: Height of the peak &, vs. width of the peak w, in a log-log scale, for 17 applause endings. A best fit
leads to a slope of —0.64 £ 0.07, again very close to the mean-field prediction of —2/3. We also show for
comparison the —1 slope corresponding to a ‘trivial’ behaviour, & ~ 1/w (thin dotted line)

program that we followed with Q. Michard in [48]. The idea was to compare the dynamics of
the very same phenomenon (for example, the adoption of cell phones) in different countries,
supposedly characterized by different imitation parameters, and different distributions of
willingness to adopt. Still, assuming (a) that the speed of evolution of the external incentive
field F(¢) is similar in all countries, and (b) that the ratio J /o is not too far from the critical
value of the model'® then the scaling prediction (23) should hold, leading to a universal rela-
tion between the height / and the width w of the evolution speed S = dm/dF = v~'dm/dt,
where v = dF/dt is the speed of evolution of the external incentive field, assumed to be
independent of the country or population. If the distance from the critical point varies across
the set of available countries or crowds, S should reveal peaks with different heights and
widths, but all related by & ~ w™ with x = 2/3 if imitation is strong.!” We gathered data
concerning (a) the drop of birth rates in European countries in the second half of the XXth
century [88, 89], (b) the increase of cell phones in Europe in the 90’s, (c) the way clapping
dies out at the end of music concerts and (d) crime statistics in different US states in the
period 1960-2000. Although social influence have been argued to be important in the latter
case too [90], our data set did not show enough idiosyncratic variations across states to be
exploited. In the first three cases, we find that our data fits well the picture suggested by
the model, and that collective effects seem to be present, with indeed k ~ 2/3—see Fig. 3.
The example of clapping is interesting because it is very close to being a controlled exper-
iment [48]. In that case, we observed both continuous and abrupt endings, as predicted by
the model. Challet et al. [91] analyzed data from a Swiss on-line supermarket, and report
k = 0.55+£0.16 for soap consumption. More data would be needed to ascertain the relevance
of the RFIM scenario in real situations. In particular a finer time resolution would allow one
to test one of the crucial predictions of the model: the presence of bursts, or avalanches,

16The RFIM is actually well known to have a rather wide critical region, as emphasized in [41].

7we emphasize again here that if J = 0, or if the variations were due to different speeds v in different
countries, one should observe k = 1. The way & and w are extracted from data is detailed in [48].
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with a truncated power-law distribution of sizes (see Eq. (25)). This would be a clear-cut
signature of imitation cascades.!8

5.2 Metaphors

In any event, the model has a huge narrative potential, and is well adapted to describe, qual-
itatively or quantitatively, many situations. For example, Nadal et al. [45—47] have analyzed
the model in great detail in the case of a product sold at price p by a monopolist supplier, and
in the presence of imitation effects on the demand side. They note that the monopolist has
two different strategies: either to attract a large fraction of buyers at low prices or to target
few buyers willing to pay high prices. There is again a first order transition where the optimal
strategy switches abruptly from one to the other [47]. They further note that, interestingly,
the optimal price is generically just slightly below the price at which the high demand equi-
librium disappears. A small change in the customers characteristics may lead to a decrease
of this critical price. If this change is not anticipated by the seller, the posted price may
become greater than the critical price, resulting in a collapse of the demand, and they relate
this observation to Becker’s interpretation of the “crowded restaurant paradox” [29].

The sudden shift from the high demand branch to the low demand branch is also a natural
mechanism for crashes in financial markets. We believe [10], like many others, in the critical
importance of trust as a determining factor for the prosperity of economies, and for securing
well-functioning financial markets. Trust is a collective asset that allows efficient coordina-
tion and tremendously accelerates business. The most illuminating example is fiat money,
that can only exist if people trust that a piece of paper will not be worthless tomorrow—and
of course if everybody gives value to a dollar bill, the dollar bill is valuable. Clearly, money
is more efficient than barter because it solves the otherwise daunting problem of matching
individual preferences. On the other hand, because trust is an immaterial sentiment, it can
evaporate overnight. Changing one’s mind can be instantaneous, the speed of change is not
limited by physical constraints. This is one of the reason why crisis, crashes and bank runs
can occur (this point of view is forcefully expressed in, e.g. [96, 97] and references therein).
Think for example of the sudden freezing of the money markets just after Lehman’s default:
clearly, banks stopped lending because all other banks stopped lending. Credit means: “I be-
lieve (credo) that I will see my money back some day”, and this belief can disappear even
if no destruction of wealth has physically taken place. Established trust is a situation where
the subjective probability of default or of failure is very small.

Several quantitative models for trust collapse have been studied in the past few years, see
e.g. [51-53, 97] and references therein. Some are directly related to the RFIM, which can
indeed be formulated as a model for trust cycles, associated to bubbles and busts, bank runs
and hyper-inflation. Suppose that for some reason the world is in a euphoric state, corre-
sponding to F — 400 and m = 1—everybody trusts the system. Fiat money is considered
as absolutely safe. Now, imagine that for some reason the objective trustworthiness of the
system F decreases. This could be due to a rise of inflation, or to over-valued prices of assets
or houses that appear far above any reasonable fundamental value. This could also be due
to political instability, or an increase in any measured or perceived risk. The most risk ad-
verse individuals will act first and sell their assets, or take their money away from the bank,

18See also [92, 93] for experiments on information cascades and [94] for some empirical evidence of tipping
points in urban segregation phenomena. We also refer the reader to [95] for a review on “econometric”
approaches to social phenomena.
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whereas most people firmly believe that the system is safe.!® Still, these initial “irrational”
reactions seed wariness in the minds of others—what if they were right? Maybe I should do
the same? As dark clouds accumulate, it is easy to guess what will happen. Either imitation
effects are small and people sell one by one their assets, leading to a slow decay of the stock
markets or a soft landing of the business cycle. Or imitation is beyond the critical threshold
and after an extended period where confidence is only maintained because everybody else is
confident (as in a bubble), a small exogenous event (i.e. a small further decrease of F) may
be enough to trigger global panic, i.e. crashes, bank runs, hyper-inflation, etc. Because the
system is hysteretic, the fundamental information F must grow back much beyond the point
where the crisis occurred for people to regain confidence (see Fig. 1).

One can think about the model slightly differently. Imagine that the external world, cap-
tured by F, is fixed, but that the imitation parameter J can vary in time. This is quite realistic:
in periods when uncertainty is small, people can rely on fundamental information to make
a judgement. When uncertainty increases, it becomes more and more tempting to take one’s
cue from the crowd. As J increases past J., an initially weakly polarized state m ~ 0 can
suddenly evolve towards m = £1 (see Fig. 1). This is a kind of volatility feedback effect,
where past volatility may trigger more herding effects, finally leading to a crash (see e.g.
[49, 98-100]).

5.3 Spatial Effects

Another interesting topic is the spatial structure of the incentive field F', which can be inter-
preted in the RFIM setting as the average willingness (to pay/adopt/trust, etc.), around which
an idiosyncratic component f; is added. It might be expected that on several issues, the
average willingness strongly depends on regional characteristics and culture. One specific
example for which spatially resolved data is available are elections. The simplest observable
is the turnout rate, which reveals persistent patterns, both in time and in space—see [101,
102] and Fig. 4. Calling ¢ (¥) the turnout rate on a given election in a city located at 7, one
can define the logarithmic turnout rate 7 (¥) as:

T=In ¢ , Te(—00,+00). (30)
1—¢

The pattern of Fig. 4 suggests a non-trivial behaviour of the spatial correlation of the 7 field,

which is found to decay roughly logarithmically with distance:>

CH =(t(R)yt(R+7))—(t(R) ~A—Blnr, r=[F, 31)

as shown in Fig. 4, inset. This logarithmic dependence holds well for different elections and
different countries, up to distances » comparable to the size of the country [102]. Another
striking observation is that the voting habits of the different regions seem to be extremely
persistent historically [101].
Assuming a logistic distribution for the idiosyncratic willingness to vote, one finds:?'
1

¢=W—>T=5F7 (32)

191 personally know people who cashed their money just after Lehman’s default, and left their bank with a
plastic bag full of bank notes.

201p the following expression, (- --) denotes an averaging over all positions R.

2INote that here we neglect the immediate influence of others in the actual decision to vote, i.e. the JS; Sj
interaction term. See the discussion of this point in [101].

@ Springer



Crises and Collective Socio-Economic Phenomena 585

r (km)

Fig. 4 Heat map of the normalized logarithmic turnout rate t () for the 2004 European Parliament election
in France, Germany, Italy, Poland and Spain. Note the strong, long ranged correlations in the patterns. Inset:
Average of spatial correlations C(r) over 20 different French elections, in a semi-logarithmic plot to reveal
the quality of the logarithmic behavior, Eq. (31). See [102] for details

where F is the (local) average willingness to vote. From the above identification, we con-
clude that this average willingness itself has logarithmic correlations in space and long-range
correlations in time. This suggests the existence of a “cultural field” that keeps the memory
independently of the presence of particular individuals.

A simple and rather natural idea is to decompose the time dependent incentive field
F(7,t) as a sum of a 7-independent component F(t) (which measures the average interest
in the election), a slowly varying “cultural” field v (¥, t) that we want to model, and a white
noise (in space) contribution € (7, £), which models city-specific idiosyncraties and only has
short-ranged spatial correlations [101, 102]. The cultural field ¥ (7, ¢) should evolve due to
(a) cultural “shocks” that contribute to changing the overall mood in a given city (such as
the closing down of a factory or of a military base, important changes in population, etc.)
and (b) diffusion, as a consequence of the exchange of ideas and opinions between nearby
cities. Through human interactions, the cultural differences between nearby cities tend to
narrow, leading to a Laplacian term in the evolution equation (in the continuum limit). We
therefore proposed to write the following noisy diffusion equation for ¥ (¥, t) [101, 102]:

w =DV*Y(F, 1) +n(F#, 1), (33)
where D measures the speed of diffusion of the cultural field*? and (¥, f) a white noise field.
If cities were located on the nodes of a regular grid, it would be easy to show analytically
that the stationary correlation function of the field ¥ (7, ) decays as a logarithm of distance,
as given by Eq. (31). However, the spatial distribution of cities in countries is in reality
quite strongly heterogeneous, which leads to significant concavity when C(r) is plotted as
a function of Inr [102]. Quite remarkably, this concavity is very similar to what is observed
for the empirical correlations [101, 102], which tends to confirm that the long-range spatial
correlations observed in election turnout rates can indeed be traced to the presence of an
underlying cultural field with a diffusive dynamics.

22Ta.king the relevant inter-town distance to be ~ 10 km and the time for opinions to get closer to be a few
months, one can estimate D to be of the order of magnitude of a few hundreds km? per year.
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While preparing this review, we discovered that a diffusion equation very similar to
Eq. (33) was in fact proposed by Schweitzer and Hoylst in 2000 [103, 104] to model opin-
ion formation. They call ¥ the “information field” and their equation can be written, in the
present context, as:

% =DV (F ) +k[pF, 1) — ¥ (F D] (34)
The last term describes a coupling between the past realized turnout rates and the cultural
field, i.e. large participation rates tend to motivate people to vote more the next time round.
However, the presence of such a term in the diffusion equation would cut-off the logarithmic
dependence of C(r) beyond a distance /D/k. Since this is not observed empirically, 1/k
is probably large (20 years or more)—at least in the context of election participation.

The idea of a persistent cultural (or information) field that evolves according to a noisy
diffusion equation seems quite important. If true, many other social phenomena like con-
sumption habits, behavioral biases, etc. should exhibit long ranged (logarithmic) spatial cor-
relations. More empirical work on the spatial correlations of these decisions, for example
based on consumption data, in different situations and in different countries, would be very
valuable—although the results on election turnout in many countries are already quite en-
couraging [102].

5.4 Multiple Choices

A generalization of the RFIM setting to multiple choices is interesting for obvious reasons:
when in a bookstore, supermarket or record shop, the choice is not between two products
but between thousands, or even millions of products. The same is true of the stock market—
one can choose to invest in thousands of different stocks. Again, the choice of others is an
important piece of information that we take into account before buying a book or deciding
on a movie. It is plausible that herding effects play a role in the appearance of Pareto-tails
in the measure of success (book sales, movie attendance, smart phones, etc.). A natural
generalization of Eq. (2) to an M-choice situation reads [105]:

ne(t+1) =0 (F* + f* + IMn, (1)), 35

where nf is the consumption of producta =1,..., M byagenti =1,...,N,Ou >0)=1
and O (u <0) =0, and 7, is the relative consumption of product «, i.e.
N doind

>ipn;

The field F'* describes the intrinsic attractivity of product «, while f;* is the willingness to
pay of agent i, to acquire product . As above, the J coefficient measures the strength of
social influence, and a factor M is added to make sure that social influence remains of order
unity when M — oo.

The most interesting question about such a model is to know whether the realized con-
sumption is faithful, i.e. whether or not the actual choice of the different items reflects the
‘true’ preferences of individual agents, as would be the case in the absence of interactions
(J = 0). Based on the phenomenology of the RFIM, one expects that this will not be the case
when J is sufficiently large. The exact solution of the model in the limit M — oo indeed
shows that a phase transition takes place for J = J., where J, can be exactly computed in
terms of the distribution of the F's and the f's, assumed to be IID random variables. For
J > J., strong distortions occur, meaning that the realized consumption will (i) “condense”

(36)

Ty
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into a small subset of all possible choices, (ii) violate the natural ordering of individual
preferences and (iii) become history dependent: a particular initial condition determines the
‘winners’ in an irreproducible and unpredictable way [106]. Instead of all products getting
a ~ 1/M share of the market, some (but not necessarily the best ones, with large F's) be-
come ‘hits’ and attract a disproportionate number of buyers. This is a possible mechanism
for the appearance of Pareto tails in most measures of success [107, 108]. Similar effects
were observed in the artificial cultural market of Salganik et al. [81], which allowed them
to conclude that increasing the strength of social influence increases both the inequality of
market shares and the unpredictability of success (i.e. which products become winners).

The model can be transposed to other interesting situations, for example that of industrial
production, for which one expects a transition between an archaic economy dominated by
very few products and a fully diversified economy, as the dispersion of individual needs
becomes larger as time passes.

6 Choice Theory and Decision Rules
6.1 The Logit Rule: Arguments and Extensions

The literature on choice theory is extremely vast and has been beautifully reviewed in [57]
(although the field has progressed since 1992). We want here to restrict to a few comments
that may help to understand some of the problems at stake. In a nutshell, classical choice
theory assumes that the probability P, to choose alternative « in a set A of different possi-
bilities can be written as:

PUa

= —ZVGA eﬂUV ’

where U, is the “utility” of alternative o and B the “noise” parameter that allows one to
interpolate between equiprobable choices (8 = 0) and utility maximization (f — oc). Be-
fore discussing the arguments that have been put forth to justify the above “logit rule”, one
should specify what one really means by “the probability P, to choose alternative «””. Two
quite different interpretations can be found in the literature (see [57, pp. 30-33]):

Py (37)

(1) One is that each agent, as a function of time, flips between different alternatives. At
each time step the probability to choose o € A is the above P,. This could be due to an
imperfect knowledge of the utilities U,, or to “irrational” effects such as illusions and
intuitions, cognitive limitations, etc. It could also be due to a truly time evolving context
or environment, not described in the theory, but that randomly affects the relative utilities
of the alternatives, in such a way that the perceived utility of agent i at time ¢ is U =
U, + e(’; (t), where e(’; () are time dependent random variables. In this interpretation, P,
makes sense even for a single agent: it is the probability that, at a given instant of time
he or she chooses «.

(2) The second interpretation assumes that any given agent i always makes the same choice,
based on the maximization of perceived utility U | =U,+¢€., where €, are again random
variables but now fixed in time. In this case, P, is the probability that a given agent in
the population has forever chosen «.

At the aggregate level, the two interpretations may look indistinguishable (see [109]), and
this is indeed true for non-interacting (independent) agents. In the presence of interactions,
however, the two formulations lead to different results for the aggregate behaviour (see
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Sect. 6.2). The first interpretation corresponds to the x-axis in the phase diagram of Fig. 2,
while the second corresponds to the y-axis.

The proposed justifications for the exponential form of the probabilities in Eq. (37) are
of three types [57]: (a) axiomatic [57]; (b) based on specific assumptions about the random
variables €/ that affect the perceived utilities; (c) based on entropy arguments. On point (b):
if the €’s are IID random variables with a Gumbel (double-exponential) distribution, then it
is possible to show that the probability is indeed given by Eq. (37) [109]. However, the deep
reason for choosing a Gumbel distribution has remained elusive—the fact that the Gumbel
distribution is max-stable does not seem to help (see however [35, pp. 32-33]). On point (c):
one can argue that agents do not want to maximize the expected utility alone, but take into
account the information cost (or the entropy) associated to the weights P,. As is well known,
the maximization of 8, P,Uy — ), Py In P, indeed directly yields Eq. (37). This has
been called the variety seeking behaviour of agents in [57] (pp. 78-79), and the exploration-
exploitation compromise in [110], which might account for some inherent uncertainty about
the time stability of utilities (see also [111]). Still, all these arguments look a bit weak;>?
the ultimate justification seems to be that the logit rule is mathematically very convenient
[57], and allows one to use well known results in statistical physics because the logit rule is
equivalent to the Boltzmann-Gibbs measure.

We will explore more the dynamical interpretation (1) above, which seems to us more
realistic. People can change their minds and not make the same decision all the time, even
when confronted to the very same information (see the discussion in [57]). The idea of
introducing a “tremor” noise in the utility dates back to Thurstone [112]. If there is time cor-
relations in the noise, and no learning or feedback from the past that induce some systematic
evolution of the utilities, one can think of a dynamical model of decisions as the following
Markov chain. At each time step, agent i, having made choice «, reviews his alternatives
with probability © and does not bother with probability 1 — . The possible alternatives
y # o are in a set A4, C A. Often people do not even consider all alternatives simultane-
ously but sequentially, so just pick one possible y, and decide whether it is worth going for
that one. (We make this assumption to simplify the following discussion.) It is reasonable to
postulate that the probability for this alternative y to be adopted is equal to the probability
that the noisy utility contributions are such that:

€L (t) — €, (t) > Uy — U,. (38)

Alternative y is therefore adopted with probability Q. (U, — U, ), where Q. is the com-
plementary cumulative distribution function of the noise differences. The time-dependent
probabilities P, (¢) therefore obey the following Master equation:

Pa<z+1>—Pa(t>=u[ Y 0., ~UIP,0 - Y. 0. (U, —Uym,(r)}. (39)

vlee Ay, yEeAqy

230ther arguments, inspired by statistical physics, could go as follows [111]: imagine a choice consisting in
two sub-choices concerning issues in disjoint sets A, 3. These two sub-choices are furthermore assumed to
be independent, i.e. the choice of an alternative « in A does not impact the utility of any of the alternatives b
in B, and vice-versa. The utilities are therefore additive in that case: Uygp = Uy + Up. Since the sub-choices
are independent, one should also have Pygp = Py X Pp,. Looking for probabilities that depend on the total
utility of the choice therefore selects the exponential form. One could also try to replicate the usual canonical
construction of the Boltzmann weight, by arguing that a choice is never in isolation but interacts with many
other choices, while the agent is only interested in the total utility. Sub-optimal choices (corresponding to a
finite B) are allowed because they only have a small contribution to the total utility. However, these arguments
are somewhat ad-hoc.
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As is well known, a sufficient condition for having Eq. (37) as the equilibrium (long time)
solution of this equation is the so-called “detailed balance” equation:>*

ln|: Q>(Uy - Ua)

Q> (Ua - Uy)

and provided that all choices are reversible, i.e. « € A, & y € Ay, Ve, y. Clearly, condition
(40) is satisfied when Q- (1) corresponds to the logistic distribution:

} =pWUs = Uy), Va,y, (40)

1 1 .
Q>(M)=1+7’ Q>(—H)=m56ﬁ 0. (u) 41

but other distributions may be suitable as well. However, there is no a priori justification for
imposing that the distribution of noise differences should have such a property. If the €’s are
IID (or at least exchangeable), one can deduce in full generality that there is a function R
such that:

Q>(u)=%—R(u), R(u) =—R(—u), R'(u) >0, R(u—)OO):%.
(42)

So expanding for small u’s one finds that the detailed balance condition is satisfied to first
order with 8 = 4R’(0), but may be violated for higher orders in utility differences:

|:Q>(—u):| [1+2R(u)
In| ——|=h| ————
[N )] 1 —2R(u)
Not much is known about these non-detailed balance models. A natural conjecture is that
for this particular class of models, for which the transition rates are functions of a utility
(or energy) difference between the initial and final state, a quasi-equilibrium state is reached
with no large scale currents. The robustness of the phase diagram and of the phase transitions
to non-detailed balance terms (., u°, etc.) is of course a crucial issue.

The case of binary choice situations with no interactions between agents is clearly much
simpler, and can be solved in full generality as:

] ~ 4R (0)u + %(RG)(O) +8R(0))u’ 4. (43)

P(S,-::I:l):%(l:l:m), m=2R(U; -U_), (44)

and the introduction of a mean-field interaction leads to a self-consistent equation that gen-
eralizes the usual Curie-Weiss equation (Eq. (14) above):

m*=2R(U; —U_+ Jm*). (45)

It is clear that for generic concave functions R(u) this model still has a second order phase
transition when §J = 2, of the type discussed in Sect. 3.1 (where 2R (1) = tanh(Bu/2)).
First order transitions can occur for more exotic shapes of R (u).

But this point of view shows that there is no reason whatsoever to think that the noise
parameter 8 should be the same for all agents. Some may be more “rational” than others,
meaning that a distribution of 8’s could be needed—something that is unusual in physics.
The interaction parameter could also be heterogeneous. The criterion for the appearance
of hysteresis effects is, in the general case, (8J) = 2, where the average is taken over the
population.

240ne should of course keep in mind that the time needed to reach full equilibrium might be very large, or
even infinite if there is a phase transition and ergodicity breaking—something that requires the number of
states to be infinite.
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6.2 Non-interacting vs. Interacting Agents, and Coordination Failure

It is worth dwelling a little more on the issue of detailed-balance decision rules in the pres-
ence of interactions. Call ¢; the choice made by agent i and P(a;, oz, ..., ay; t) the joint
distribution of the choices of the N-agents at time ¢, and C = {«;, a3, ..., ay} the configu-
ration of choices made by all agents. The time evolution of the population is a random walk
in the space of choices, and is determined by the transition probabilities W (C — C’) to go
from configuration C to configuration C’ between ¢ and ¢ 4+ 1. Assume that at each time step,
only one agent can change his choice. The set of accessible configurations from C is made
of all configurations that differ from C by a single agent changing his choice. If every single
agent i uses a logit-rule to update his choice from «; to y;, with possibly i dependent utilities
U(f(, one finds for the transition probabilities:

n

w(c—C)= ——
1+ P Ve =%

(46)
Assuming individual choices are reversible in the above sense, do these transition proba-
bilities W (C — C’) obey detailed-balance? Superficially it seems to be so, but the presence
of interactions can ruin the detailed-balance property. Detailed-balance is obeyed provided
there exists a certain function (C) that depends on the choice made by all agents, such that:

i i i
Uw —Ual_:H(al,az,...,y,-,...,a,v)—H(al,az,...,ai,..‘,aN), Vi, Vo, y.

(47
In this case, one indeed has:
W — ()
——— | =B{H(C") = H(©)|, 48
e | = A1) - )] @)
such that the long-time equilibrium probabilities are given by the Boltzmann-Gibbs weight:
P(C,t — o0) = Z LePHUCD (49)

When agents are non interacting, in the sense that the utilities U are independent of the
choice made by others, then clearly:

HEC) =) UL (50)

When there are interactions, this is no longer true, and in fact it is in general not possible
to construct such a function (the consequences of this impossibility will be discussed at the
end of this section). A simple case where such a construction is possible, for example, is the
binary choice situation where «; = S; = %1, and where the utilities take the following form:
Ui _—ﬁs + ) JiSiS) (51)

J#

with J;; = Jj; an arbitrary symmetric matrix. In this case, one can check by inspection that
‘H is given by:

H({S)) = Zf’s + = ZJ,]SS (52)
1751
One sees on this example that 7 is not the sum of individual utilities. In fact:
; 1
(1S¢)) ZU —E;J,-js,-sj. (53)
i#]
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The difference between these two quantities can have important consequences, as pointed
out in the beautiful paper of Grauwin et al. [113, 114]. They consider a variant of the
Schelling model of segregation, where each agent i is sensitive to the density ¢ € [0, 1]
of the neighbourhood in which he/she is living. Agents do not like living in derelict neigh-
bourhoods (¢ >~ 0) nor in overcrowded neighbourhoods (o 2~ 1). Their incentive to live in
a neighbourhood situated around 7 is a certain function v[o(¥)] that has a maximum at
o = 1/2; for example v(u < 1/2) =2u and v(u > 1/2) =2 — 2u. The global utility is a
functional of the density field o(¥) and is given by:

Us(lo®)) = [ d7 orfo(] 54

where L is the linear size of the city. Suppose that the size N of the population is such that
N/L? =1/2. It is in principle possible in this case to make everybody happy and reach the
absolute maximum of the global utility of the population by having all neighbourhoods at
o0 =1/2,1in which case Uj, = N vy, With v = v =1/2) = 1.

Now, what will really happen if agents choose their neighbourhood based on their own
utility? More precisely, let us assume that each agent can move from 7 to 7’ with a proba-
bility given by the logit-rule, i.e.:

- ®
W(F—7) = 1 + eB@le@®1-vieGHD * 43

The function H alluded to above is also a functional of ¢(¥), and according to the general
principle expressed by Eq. (47), it should be such that, for all fields o(r):
0H SH
do(r")  do(r)
where we have assumed that the elementary area of a neighbourhood is normalized to one.
The solution is:

v[e(7)] - v[e®]. (56)

ol7]
H[{e}] :/Lz dr [/0 dQ/U[Q/]—i—AQ[?]], (57)

where A is an arbitrary constant. Therefore, unless v is a constant, independent of o (i.e. for
non interacting agents), H # Ug.

Now, the equilibrium probability is given by the Boltzmann-Gibbs measure:*’

P[{o(}] cxeXp[ﬁ /L dr (V (el71) —wm)}, (58)

with V’(.) = v(.) and A is a Lagrange parameter ensuring that the average density is fixed to
a certain p. The most likely density configuration, for 8 — 00, is such that V' = A, V7. For
the above symmetric piecewise linear choice for v(u), one finds that the local density must
be equal to o = 1/2 — § with probability p, and o = 1/2 + § with probability 1 — p, with p
suchthatp =1/24+82p —1),and § € [—-1/2, 1/2] such that:

1 2 1 1 2 1 /1
I(8):p<§—5> +(1—p)(§+28—(5+8>>21 <Q—§>(8—1) (59)

is maximized. In the case where ¢ > %, the maximum is realized for § = 1/2, and when
0 < %, it is realized for § = —1/2, but both solutions correspond to complete segregation,

25We neglect here an entropic term, which is small when 8 — oo, see [113, 114] for details.
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i.e. completely full (0 = 1) or completely empty (o0 = 0) neighbourhoods! (The case where
o0 = 1/2 is degenerate, but any infinitesimally small departure from this case leads to seg-
regation.) Therefore, letting people optimize their own utility, to the detriment of the global
well-being, leads to a disastrous situation. This is a stunning illustration of a case where
Adam Smith’s invisible hand totally fails to bring the society to a global optimum.

Now, as proposed in [113, 114], coordination can be improved by making individuals
conscious of the common good when they make their choice, by adding to the change of
individual utility a term proportional to the extra cost in the global utility, i.e. change the
logit-rule according to:

AU:U[Q(7/)]—U[Q(7)] — Av+([AUg — Avl. (60)

Since Ug is already a functional of the density field, one can immediately see that the func-
tion H,[{o(¥)}] adapted to the new choice update rule is given by:

He = (1— OH+LUs. 61)

Correspondingly, the equilibrium probability is now replaced by:

P [{o(M}] aexp[ﬁ / 2d?{<1 — )V (olF1) + ¢olFlu(elF]) — AQ[F]}]. (62)
L

The most likely configuration can again be computed. One finds that it becomes the socially
optimal solution ¢[F] = 1/2 and U} /N = vma as soon as ¢ > ¢ = 1/3. As stressed by
Grauwin et al., this model shows that the optimization strategy based on purely individual
dynamics fails, illustrating the unexpected links between micromotives and macrobehaviour.
Making individuals aware of the costs of their choice for the society is, in some cases, useful
to nudge the system into cooperation/coordination [115].

Note that the results of Grauwin et al. hold provided the decision rules obey detailed-
balance. However, detailed-balance is, in the general case of interacting agents, the excep-
tion rather than the rule. Very few general results are known when detailed-balance is vio-
lated, see e.g. [116—118], see also [119] in the present context. Of course, some equilibrium
will be reached after a long time, but there is no explicit construction of the equilibrium
probability, similar to Eq. (49) above. One knows that in the general case, equilibrium cur-
rents are present. This is due to the fact that the probability to cycle ‘clockwise’ around a
closed loop in decision space is different from the probability to cycle ‘counter-clockwise’—
except when detailed-balance is satisfied. Studying and interpreting these currents in a socio-
economic context would be very interesting, in particular because these currents are known
to considerably speed up the equilibration time in certain cases [117, 120, 121], preventing
the system from getting “trapped” in deep maxima of the function H (the equivalent of deep
energy wells in physics). For example, a natural extension of the model of Grauwin et al.
that would exhibit equilibrium currents and (perhaps ?) mitigate segregation, would be quite
appealing.

7 Imitation of the Past and More Instabilities
7.1 Memory and Habit Formation
Any realistic model of decision should in fact take into account that the utility/incentive of a

given choice cannot be thought of as time independent. For example, it is hard to know how
useful or interesting choice « is without having tried it at least once (think about restaurants,

@ Springer



Crises and Collective Socio-Economic Phenomena 593

for example). A simple way to model this would be to assume that the perceived utility of
choice a, UL, is initially blurred by some estimation error €/, that decays to zero as the total
time spent choosing o grows; for example [122]:

€Lty =€ (t =0)e "%, (63)

where ¢, is the fraction of the time during which o was chosen. In effect, this should be
similar to having an effective parameter B(¢) that increases over time. This is the equivalent,
in physics, of an annealing process where the temperature 7 = 1/ slowly decreases with
time.

As the relative utility of choices becomes better known to agents as time evolves, a sec-
ond, more important effect might kick in: habit formation or “stickiness”. Often, past choices
become more valuable only because they happened to be chosen. This can be for good rea-
sons, like creating a loyalty relationship (such at the Marseilles fish market [123, 124]), or
because going to the same doctor makes that doctor know your personal problems better,
etc. But it can also be because of high risk aversion (maybe another choice is better, but
maybe it is much worse, so better stick to what I have) or sheer intellectual laziness. Hotel
and restaurant chains are based on this strong universal principle: people often tend to prefer
things they know.

This can be formalized as follows: define an indicator function 6, (¢"), which is equal to
1 if choice « is made at time ¢, and zero otherwise. The utility of choice « at time ¢ for a
given agent is written as:

Ua(t) = Ua(0) + > Kot — 1')00(t'). (64)
t'<t
where U, (0) can be thought of as the ‘true’ utility of choice o and K, () is a certain mem-
ory kernel, which measures how much of the far away past is affecting the utility today.
When K, > 0, choices are self-reinforcing.?® This model, with an exponentially decaying
memory K, (t) = sq", was introduced in [110] to model loyalty formation between buyers
and sellers in the Marseilles fish market.

Suppose a somewhat degenerate case where initially U, (0) = 0, i.e. all choices are a pri-
ori equally good. What happens at long times? Is loyalty a long-term emergent property due
to ‘imitation of the past’, similar to the appearance of ‘winners’ in the artificial cultural mar-
ket of Salganik et al. due to imitation of past choices of others ([§1] and Sect. 5.4 above)?
The analysis proposed in [110] is based on a mean-field argument. If the utilities U, (¢) do
not change too fast, equilibrium can be assumed to hold at each time step, leading to:

Py(t) = Z(1)7' PV, (65)

where Z(¢) is the time dependent normalization. Now, replacing the history dependent U, (¢)
by its average leads to a self-consistent equation for P, (¢). Assuming that P, () converges
at large times towards P, these should be given by the solution of:

1nP;=—1nZ*+fﬂP;. (66)
Clearly, Py =1/M,Ya =1, ..., M is a always solution, corresponding to the absence of

loyalty formation—if o denotes the seller in a fish market, it is a situation where buyers tend
to change their seller every week, and no long term relationship arises. However, this fully
diversified solution becomes unstable when B8s¢q > M (1 — g), and the solution becomes

20This is similar to reinforcement learning rules, see e.g. [35, 77] for some references in the present context.
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‘polarized’, i.e. a habit, loyalty or addiction spontaneously appears beyond some reinforcing
strength ¢, assuming the memory time (set by ¢) is fixed. Note that this is an example of
a condensation phase transition which occurs even with a single agent, since we have not
introduced any interaction between agents in the model, only a memory feedback. When the
‘true’ utilities are different, the same effect can exist: habit can lead to a persistent choice of
suboptimal decisions.

This is a very nice effect, but unfortunately the mean-field argument is flawed in this
particular case. In order to see why and to possibly rescue the result, let us focus to the binary
decision case, where «(t) = S(#) = 1. In this case, only the difference U, () — U_(¢)
matters, which can be written as:

Ur(t) —U_(t)=U(0) = U_(0)+ Y _K(t—1)S(t). (67)
t'<t
Assuming U, (0) = U_(0) and using the logit decision rule Eq. (3) with i = 1, one estab-
lishes that the probability to observe a certain history of choices {S;}o</<. is given by:
explB Y g<i<p SO Yy, Kt —1)S)]
P[{SI}OStSL] = 1 (63)
[To<i<z 2cosh[B) ., Kt —1)S)]
But this is similar to the Boltzmann-Gibbs weight for a spin configuration of the one dimen-
sional Ising model, with an interaction matrix K (r —¢") that depends on the “distance” r — ¢’
between the spins. The difference comes from the denominator, absent in the Ising model;
but one can argue that if there is no phase transition in the Ising model, there is no transition
in the above model either.?” Quite a lot is known about the one dimensional Ising model in
the limit L — oo [125, 126]. In particular, it can be proven that when K (t) decays faster
than 72 when T — oo, the system is always in the high temperature, disordered phase,
where the magnetization is zero. This means that the two choices remain equally probable
at long times; there is no loyalty formation and ergodicity is not broken. Still, it is known that
the correlation length of the Ising model (and thus the correlation time in the present ver-
sion) grows exponentially fast with the interaction strength. For example, when the memory
decays exponentially as in the model of [110], one finds that the typical time during which
an agent remains faithful is given by exp[28s¢q/(1 — g)] when B¢ > 1. The transition
found in [110] is thus in fact only a crossover between a fickle phase and a sticky phase.
However, for longer ranged memory kernels, a true phase transition takes place. Suppose
K (7) decays asymptotically as t 7" with 1 < v < 2, then there is indeed a critical value of
beyond which loyalty sets in the sense that the probability to choose +1 or —1 is not 1/2,
1/2 anymore. The marginal case v = 2 is in fact special and very famous: it corresponds to
the Thouless-Anderson-Yuval model with a long history in condensed matter physics [125,
127, 128]. When v < 1, loyalty appears for any non-zero value of 8. Similar conclusions
are expected to hold for multiple choice situations as well. The case where memory adds
to interaction between agents was recently considered in the context of the Ising model in
[129].

It would be interesting to try to determine empirically whether people’s memory of past
choices decays exponentially or as a power-law. Power-law memory is well documented
in many human activities, including financial markets, see e.g. [130-132] and references
therein. We see from the above model that this question might be quite relevant for the
appearance of persistent choices and decisions, or self-fulfilling prophecies, which are very
closely related to the above scenario, and to which we devote the next section.

2TMore rigorous work is needed on this whole issue; in particular on whether the existence of a transition in
the Ising model is sufficient to ensure loyalty formation.
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Fig. 5 Left: Normalized correlation between the Dow-Jones daily returns and the daily returns of a U.S.
bond index with 7 to 10 years bonds, computed with an exponential moving average of 100 days. Note the
convention change occurring at the end of 1997. Inset: Zoom on the evolution of the Dow-Jones and the bond
index in the last quarter of 1997, during the Asian crisis. Right: One characteristic trajectory of the dependent
correlation c¢; in the model defined by Egs. (71), (73), for g=1.2and 1 — ¢ =0.01

7.2 Conventions and Self-fulfilling Prophecies

As we mentioned above, habit formation is due to ‘imitation of the past’ rather than ‘imita-
tion of the peers’. In fact, both effects can be present and reinforce each other.”® We want
to pursue this further and consider other theoretical scenarios of feedback of the past on
current decisions, that may lead to self-fulfilling prophecies [133] and endogenous crashes
[10]. This of course opens the whole field of learning models, much emphasized in e.g. [27,
35, 54, 77], that is much too big to be fairly covered in this paper.

In the context of repeated decisions (such as investing in financial markets), a common
temptation is to compare the present situation with similar situations from the past, and posit
that what already happened is more likely to happen again. As Brian Arthur puts it: As the
situation is replayed regularly, we look for patterns, and we use these to construct temporary
expectational models or hypotheses to work with [54]. Often some plausible story is given
to understand why such a pattern should exist. This convinces more participants that the
effect is real, and their resulting behaviour reinforces (or even creates) the effect: this is a
self-fulfilling prophecy. A large consensus among economic agents about the correlations
between a piece of information and the market reaction can be enough to establish these
correlations. Such a ‘condensation’ of opinions leads to what Keynes called a convention
[2, 134], a commonly shared representation of the world on which uncertain agents can
rely on to make a decision. However, as he further noted, a conventional valuation which is
established as the outcome of the mass psychology of a large number of ignorant individuals
is liable to change violently as the result of a sudden fluctuation of opinion due to factors
which do not really make much difference. . . .

As a striking example of a sudden change of convention, we show in Fig. 5 the correlation
between bond markets and stock markets as a function of time. This correlation was positive
before 1997, because the common lore suggests that low long term interest rates should
favor stocks. Since bonds move opposite to rates, an increase in bond price should trigger an

28Interesting situations could occur when these two effects are in conflict, for example when overcrowding
or saturation effects prevent full condensation.
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increase in stock prices. But another story suddenly took over in the midst of the 1997 Asian
crisis: a fall in stock markets triggered an increased anxiety of the operators who sold their
risky paper and bought non-risky government bonds. This so-called Flight to Quality then
became the dominant pattern. There are many other anecdotal examples of such conventions
in financial markets: indicators or news items (inflation, payrolls, etc.) that everybody pays
attention to at one moment in time, before collectively deciding it is irrelevant after all.

The sudden shift seen in Fig. 5 is quite remarkable. A model that could explain such
a change in convention was proposed in [135]. Call p, the (log-)price of a certain asset at
time ¢, and 8p, the return between ¢ and ¢ 4 1. Some agents base their strategy for buying
or selling on the observation of the temporal change of a certain index Z;, which might be
a financial index or an economic indicator (for example, dividends, interest rates, inflation,
confidence, unemployment, etc.), or even the price p; itself or the price of another asset.
Denote by 6Z, the change of this indicator between ¢ and ¢ 4 1, normalized to have zero mean
and unit variance. Suppose that it is reasonable that there should exist a causal correlation
between §Z; and 8p,, i.e. that the correlation coefficient between the two time series is:

E[ST.pi] =c. (69)

It is well known that the best prediction (in a quadratic sense) of p,; knowing 8Z, is given
by

8pf 1 = cbT,. (70)

Now, imagine that there are two types of agents, those who act based some information un-
correlated with Z, and those who try to take advantage of the possible correlations between
8Z; and 8p;y,. Since the true, fundamental value of the correlation c is in fact not known
(and might actually be zero!), agents of the second type attempt to learn this value from past
history. Similar to the above model of [110], let us assume that the memory of the past is
decaying exponentially, leading to an estimated value of c at time ¢ given by:

t—1

1-— ,
quq 3 ¢ Gledpes), (71)

t'=—00

where g sets the memory time of the exponential moving average. Equation (71) is
equivalent to the following Markovian update of the estimated correlation ¢, = g¢,—; +
(I —¢q)81;_1dp;.

Agents using the information based on Z, then decide to buy (or sell) a quantity @, that is
a (odd) function of the predicted next return dp;, ;| o c;8Z;. One expects on general grounds
that the demand function @; is linear for small arguments and saturates for large arguments.
The small ¢ expansion should thus read:

@, = ac,8T, — b(c,8L,)° + 0(c%), (72)

where a, b are positive coefficients. These orders add to the demand 2, of all other agents,
who use a different type of information. Assuming the aggregate order imbalance has a linear
impact,?> we finally end up with the following expression for the realized price change at
t+1:

Spiy1 = A[Qt +ac 8L, — bcféff] + O(CS), (73)

29Whereas the impact of individual orders in strongly concave, the impact of the aggregate order imbalance
is, to a good approximation, linear. See [65, 66] for a long discussion of this issue.
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where X is the impact coefficient, relating volume imbalance to price changes: §p = A®.
We will define the feedback strength parameter as g = aA, which plays a central role in the
model, and assume that the ‘true’ long time average correlation c is zero, i.e. there is in fact
no information in Z;.

Combining Egs. (71), (73) and taking a continuous time limit (justified in the limit of
long memory kernels, g — 1), one finally finds the following Langevin equation for ¢ (see
[135] for details):

av
dc=——dt + d§, (74)
dc

where dé& is a Brownian noise (related to §2) of variance 1 — ¢ and V is an effective potential
given by:

1 2 1/4
V@)=§(1—gk +Zbc, (75)

with b another positive coefficient [135].
The equilibrium distribution of estimated correlations c is then easily found to be given
by:

(76)

) 2V(0)
C)= Eexp(— )

I—gq

For g < 1 the potential has an absolute minimum at ¢ = 0, whereas for g > 1, ¢ = 0 becomes
a local maximum and two stable minima appear for ¢ = +c* = £./(g — 1)/b’. Therefore,
for g < 1 (weak feedback), P(c) is unimodal and has a maximum at ¢ = 0, reflecting the
underlying reality. When feedback is stronger (g > 1), however, the most probable values
for ¢ are £c*. This means that for strong feedback, a non-zero fictitious correlation between
the price and the indicator spontaneously appears—this is the so-called sunspot effect [133].
The correlation can be either positive or negative, corresponding to the two possible ‘con-
ventions’. However, the long time average of correlation is still zero even when g > 1, since
c randomly flips between £c*. But the time needed to do so is however exponentially large
in the memory time of the agents, 1/(1 — ¢g). Hence non-zero estimated correlations can
therefore persist for very long times, as in the exponential memory model of [110]. One
therefore expects to observe long periods during which ¢ ~ +4c*, until the convention re-
verts quite abruptly towards ¢ & —c*, as observed for the bond-index correlation shown in
Fig. 5, where we also show a numerical simulation of the model corresponding to g = 1.2
and ¢ = 0.99.

Finally, suppose now that there indeed exists a small objective correlation ¢y < 1 be-
tween ép,+ and 81;, justified by some real economic mechanism relating the two quantities.
One can show [135] that this is accounted for by adding a linear contribution to the effective
potential V (c):

V(c) — V(c) —coc. 77

For g < 1, the most probable value of ¢ is ¢y/(1 — g) (= ¢ for g =0, as it should in the
absence of any feedback). Therefore, c is of the same order as its true cause whenever g < 1.
However, in the limit g — 17, the apparent correlation becomes much larger than its true
cause: the sensitivity of the market to external information is anomalously amplified by the
impact of traders using that information. For g > 1, the amplitude of the apparent correlation
is totally unrelated to that of the true correlation, although the sign of the correlation reflects
the underlying economic reality. One describes here a typical example of overreaction to
news leading to excess correlations that are well documented in the literature (see e.g. [136]).
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For example, the correlations between the stocks belonging to an index and the index itself
are too strong to be explained by the intrinsic correlations between the stocks [137]. These
increased correlations seem to reflect a self-induced “risk-on/risk-oft” mode (see [138] for
similar ideas).

7.3 Self-induced Bubbles and Collapse

In the previous model, agents were trying to learn correlations to make a forecast of the next
price change. But among the most pervasive biases in human perception is the detection
of trends (or the illusion of trends). The human eye seems to be programmed to make a
“fast and frugal” linear regression, and extrapolate the line into the future (see [139] for
experimental evidence of this forecasting rule). Humans (and of course, animals) are also
very good at detecting danger. These two basic features can be minimally encapsulated in
the following “mood indicator” M [140, 141]:

M, =aT; — bRy, (78)

where 7; is a trend indicator and R, a risk indicator, and a, b again two positive parameters.
The a term describes the unrelenting propensity of humans to follow trends, while the b term
can be thought of as a risk aversion term, prompting investors to sell when the perceived risk
becomes too large. For simplicity, one assumes that both 7; and R, are constructed as above
as exponential moving averages of respectively the past price changes and the past squared
price changes:

t—1 t—1

1—gq . 1—gq _y
T=—0r dod e, Re=——= Y ¢ 8pi. (79)
t'=—00

t'=—o00

Now, as argued in [141] and more recently in [66], supply and demand in financial mar-
kets cannot be instantaneously matched. This is due to the fact that the immediate outstand-
ing liquidity in the order book, or provided by market makers, is a tiny fraction (say 1 %
or less) of the total daily volume. So in fact there is always a certain amount of pending
demand or pending supply, which was called “latent liquidity” in [66]. The idea of [141]
was to write the following dynamical equation for the latent order imbalance @, :

D1 — Py =—pu®@ + M; + £, (80)

where the first term comes from the fact that a well-functioning market allows to the or-
der imbalance to relax to zero on a time scale ~! (through execution and cancellations),
whereas the second term describes the arrival of new buy orders or sell orders, triggered by
the mood indicator M,. The extra random noise §2, is coming from exogenous events or
from the behaviour of agents following different indicators. The price evolution equation is
still given by the simplest linear model: on average, the latent order imbalance @, biases the
price upwards or downwards as dp, = AQ,.

There are two time scales in the model: ="' (related to the liquidity of the market) and
(1 — ¢g)~!, the memory time over which trends and risk are computed. The analysis of the
model can be made in both limits © < (1 — ¢) and u > (1 — g), with similar conclusions,
see [141]. In order to keep the discussion as simple as possible, we focus here on the case
of extreme short memory, i.e. ¢ — 0, in which the dynamics of the price is given by:

Di42 = 2Pip1 + pr =MDy — D)
= —w(pir1 — p) +ar(p, — pi—1) — bA(p, — pi—1)* + 182,. (81)
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This evolution is easier to interpret in the continuum time limit. Set v = dp/dt (the price
“velocity”); then up to small terms the above equation reads:
dv aw o ) v? b v
E——%‘F)& 1 W(U)~—(M_)“a)?+)» 3
which describes the overdamped evolution of the position v of a fictitious particle in a cubic
potential W (v), in the presence of noise.

When trend following effects are small, or the market liquid enough (Aa < w), the po-
tential W (v) has a minimum at v = 0, which translates into a random-walk regime for the
price itself (at least on time scales >> ™', see [141]). But W (v) also has an unstable maxi-
mum for a negative value v*, beyond which the potential plummets to —oo. This describes a
risk-aversion induced crash: when several small negative shocks £2, accumulate by accident,
the risk-aversion term —bR; induces further selling pressure. This unstable feedback loop
leads to a crash once the tipping point v* is reached. But for the crash to occur, an “energy
barrier” W (v*) has to be crossed, a situation that we have encountered in the above sections
(see Sects. 3.2 and 7.2). The time needed to cross this barrier is, again, exponentially large
(in 1/b?): for small enough risk-aversion, these crashes are very rare events.

Now, the interesting regime is when trend following effects become strong, i.e. when
Aa > pu—meaning that the market cannot fully digest the pressure imposed by trend follow-
ers. In this case, the potential W (v) has a stable minimum for v* = (Aa — ©)/b > 0 around
which v(7) oscillates. This means that a trend has appeared: the (log-)price is a random walk
with drift v* and thus on average increases linearly with time, as p, — pp & v*t. This is a
self-induced speculative bubble, which persists because of the trend following tendency of
investors, and the inability of the market to absorb the demand quickly enough.

Within the context of the model, there are two possibilities for the bubble to burst. One
is a risk-aversion crash, as discussed above, where an accidental fall of the price, driven by
the noise term £2,, brings the system close to the “cliff”, i.e. the maximum of W (v) now
situated at v = 0, beyond which the crash unfolds. The second possibility is the presence of
investors who believe in a fundamental price level, p*. It is reasonable to model this class
of investors as contributing to £2, in proportion to the difference between the actual price
p; and the fundamental price p*. Clearly, a large discrepancy is an incentive to bet on a
probable reversion of the price towards p*. As the bubble grows, the price p, moves further
and further away from the fundamental value: p, — p* ~ v*z. In a first approximation, this
effect adds to W (v) a time-dependent linear contribution:

2 3

v v
Weir(v) & Apv*tv + (1 — Aa); + )»b?,

where ¢ > 0 measures the strength of fundamental investing. Interestingly, the minimum of
this potential (corresponding to the self-sustained bubble) only exists as long as:

(82)

(83)

— /22 A —
v*t<w—>t<tczu. (84)
4b¢ 402¢
When the price is too high, the self-sustained bubble becomes unstable and a crash occurs,
with v moving to large negative values. Note that, as expected, ¢, becomes small if funda-
mental investing becomes dominant (i.e. ¢ large).

Note also that Eq. (84) gives only a rough order of magnitude of the critical time ¢,
beyond which the minimum of the potential ceases to exist. The real mathematical problem
requires one to deal with the following non-linear stochastic differential equation:

d’p dp

d 2
ﬁ:(xa—u)d—’t’—m(z> —xp(p— p*) + 282, (85)
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However, the simplified treatment in terms of an effective, time dependent potential Weg(v)
suggests that the crash is associated to the same generic saddle-node bifurcation as the one
recently studied in [142] in the context of earthquakes and material creep.’® The authors of
[142] suggest that some precursor effects, like a shift of the power-spectrum of the fluctu-
ations to lower frequencies, could be used as a signal of the incipient instability. Whether
these ideas can be transposed to financial instabilities is of course highly conjectural.

The above model, although highly stylized, seems to capture several interesting facets of
the dynamics of financial markets: trends feed trends and risk-aversion can lead to crashes.
All these effects come about because past events feed back onto present decisions. The
model also illustrates the competition between trend following strategies and fundamental
strategies, that leads to bubbles and crashes, and intermittent dynamics—as is also the case
for several agent-based models of financial markets with the same ingredients (see e.g. [144,
145], and for recent reviews, [146-149]).

8 Conclusion

Financial and economic history is strewn with bubbles and crashes, booms and busts, crises
and upheavals of all sorts [150]. Time series of prices exhibit discontinuities on all scales
[10, 151]. Often, these major events seem unrelated to any fundamental news (see [152—
154]), or at least look incommensurate with any reasonable proximate cause. Equilibrium
models, often expressed in terms of the behaviour of a single rational ‘representative agent’,
are perhaps adequate to describe small excursions around a stable situation, but are unfit
to explain, or even accommodate, major disruptions. The big problem is that these crises
are anything but rare [84]: the economy is not a ship sailing on a well-defined trajectory
which occasionally gets knocked off course [7]. As stressed by Kirman, the economic crisis
is a crisis for economic theory [155]. However, having declared the old theory dead and
buried is not enough. One is faced with a crucial problem: providing a viable alternative.
Until such an alternative theory is available and to some extent operational, all professional
economists (professors, researchers, experts of all kind, policy makers) will prefer to stick
with the previous paradigm. After all, Ptolemy’s epicycles remained for many years better
than Newton’s theory at predicting the motion of planets.

Still, the idea that heterogeneities and interactions are crucial to understand crises should
be taken seriously both by researchers and by policy makers (see, e.g. [156] for some work in
that direction). The aim of this paper was to review recent efforts to include heterogeneities
and interactions in models of decision. We have argued that the RFIM provides a unifying
framework to account for many collective socio-economic phenomena that lead to endoge-
nous ruptures and crises. Interestingly, the RFIM has been proposed as a prototype model to
describe many physical crises: magnetic avalanches, earthquakes, solar flares, material fail-
ures, etc. [42]. In all these examples of “complex systems”, small causes may lead to large
effects. The analogy between these physical phenomena and economic/financial turbulence
is enticing, at least at a superficial level. In this respect, it is certainly rewarding to set up
models that can capture potentially destabilizing self-referential feedback loops (induced
either by herding, i.e. reference to peers, as in Sects. 3.1, 4.2 or trending, i.e. reference to
the past, as in Sects. 7.1, 7.2 and 7.3), and that can reproduce some of the phenomenology
missing in the standard models. However, the real challenge is to move up one notch and

301n fact, the RFIM has also been related to the physics of earthquakes and material creep, see [42, 143]. It
would be interesting to make a detailed connection with the work of Ref. [142].
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to upgrade these cartoon models into real models. For example, it is, in our view, crucial
to include in a consistent way the dynamics of trust—and the possibility of sudden trust
breakdown, along the lines sketched above—in macro-economic models, in such a way that
extreme events and crises can be accounted for. This is an ambitious project, which is only
starting.’!

Cartoon models are useful on many counts. But in the present case, did we learn anything
that was not put by hand in the model? We believe so, at least insofar as the models can be
used to give precise, well defined questions with possible empirical answers. For example,
the robust signature of RFIM-like herding effects reported in Sect. 5.1, or the logarithmic
spatial correlation of voting patterns (Sect. 5.3) are predictions of quantitative models which
were not expected a priori. Still, one would like to go beyond the level of plausibility and
metaphors, and reach indisputable quantitative agreement between at least one non-trivial
prediction of these self-referential feedback models and some empirical data. For exam-
ple, the power-law distribution of avalanche sizes predicted by the RFIM is tantalizing and
might enable one to understand why bursts of activity and power-laws appear in e.g. the
distribution of returns in financial markets. But there is not much more, at this stage, than
wishful thinking and hand-waving. The possible existence of a condensation phase transi-
tion in multiple choice situations, of the type described in Sects. 5.4 and 7.1, seems to be
a highly relevant question, again amenable to precise empirical investigations (see e.g. [81,
123]).

In our opinion, the most striking example of surprises (i.e. results that are not anticipated
before a model is solved) encountered in this review is the clear quantitative demonstration,
within a Schelling-type segregation model [113, 114], that Adam Smith’s invisible hand
can fail badly at solving simple coordination problems—see Sect. 6.2. We have also tried
to insist on the issue of time-scales, that are generically extremely long in heterogeneous
interacting systems (see e.g. [157]). This may prevent a socially optimal equilibrium to be
reached, unless some kind of catalysis nudges the system through an otherwise unsurmount-
able “barrier”—see Sect. 3.2. As a theoretical question, the study of detailed-balance violat-
ing decision rules (which must be the rule rather than the exception) seems to me well worth
the effort, in particular to decide whether conclusions based on detailed-balance rules are
indeed robust and generic. Of course, a unifying description of non-equilibrium stationary
states is a major challenge in statistical physics as well! In any case, We hope the reader will
be convinced that statistical physics can contribute to a better understanding of collective
socio-economic phenomena, and that these theoretical ideas could one day be ripe enough
to have a real impact on policy issues.
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