

### I am an evolutionary biologist.



### An evolutionary biologist

**Evolutionary biology tries to explain the history and diversity of life.** 

### What processes produced and sustained the diversity of life froms, over time?



I investigate these issues using networks, focusing on interactions.

### Aim of this talk

A (long but) simple argument to show that evolutionary biology may have something relevant and new to say about dependencies and interdepencies in the biological world.

### Rough plan of the talk

- Traditionally, evolutionary biology focuses on <u>lineages</u>
- However, a different focus on <u>interactions</u>- appears very relevant
  - A focus on interactions <u>expands evolutionary explanations</u>
- with potential to <u>better track dependencies</u>/interdependencies in the living world



Evolutionary biology traditionally describes the history of **lineages**.



### This book presented:

- 1 process: descent with modification

- 3 conditions for its realization (variation, inheritance, differential fitness)

- 2 bold hypotheses: natural selection + tree of life



Therefore, classic evolutionary biology is centered on natural selection, to explain the survival of the fittest



the production of (advantageous) variation

- the transmission of that (advantageous) variation to offsprings
- An **increased ability of organisms with advantageous variations to produce more offsprings,** So that, over generations, **the frequency of more fit organisms would increase in a population.**

The bottom line is that « genes mutate, organism change and population or species evolve».

### Furthermore, Darwin extrapolated this logic to explain the evolution of all organismal lineages on Earth.



There are indeed **many good reasons to use a tree model** to study the biological world and its evolution.

It offers a popular way to classify living beingss and to infer shared derived traits inherited from an ancestor.



But this tree-based picture **should not hide another biological observation**: there are **interactions everywhere in the biological world**.

### We are composed of networks and part of networks.



Importantly, these networks introduce dependences/interdependences

and their structure and evolvability may explain the stability of Life on Earth.

Let's now consider the biology in a bit more details. What are these interaction networks?

# There are **interactions everywhere in organisms**, even in simple cells.



#### A. Malakhova

### For instance, 2 representations of *E. coli*

left morphological;

right: emerging from gene regulatory networks





**Regulators** Other genes

The architecture of these networks is informative.





#### Feed-forward loop

В



С

А

### This introduces new biological questions: how did the architecture of such networks evolve?



### Networks support **different explanations** than a tree:



We are developing « phylosystemic » methods dedicated to **infer interaction network evolution**.

### Principle of a 'phylosystemic'/'evosystemic' study.



Watson, A.K., Habib, M., Bapteste, E., 2020. Phylosystemics: Merging Phylogenomics, Systems Biology, and Ecology to Study Evolution. Trends Microbiol. 28, 176–190

# For instance, we inferred the evolution of protein interactions associated with ageing



# • Organisms, even simple cells, belong to networks.



A. Malakhova

### Microbes interact in many ways.

• Competition

Cooperation

• Communication



Wanner *et al.,* J. Bact.(2008)

Erez et al., Nature

### Some ultra-small microbes are involved in collective reactions by metabolic hand-offs



Ultra-small cells would have lost some of their genes in the context of

interactions with other organisms.



(Sélosse et al. Trends in Micro., 2014)

### Such interactions lead to counter-intuitive predictions.



(Gray & Doolittle, Science, 2010)

#### **PRE-SUPPRESSION**

Such dependances are difficult to reverse, thus complex microbial communities, with non autonomous cells, are expected to evolve over time.

### This kind of explanation contrasts with a more classic vision.



### Survival of the fittest (within a population/species)



### Complementation (within a community)

Other ex, horizontal gene transfer is a process by which an organism receives genes from a neighbor, rather than from an immediate ancestor.

Pssst! Hey kid! Wanna be a Superbug..? Stick some of <u>this</u> into your genome... Even penicillín won't be able to harm you...! http://www.lab-initio.com/sci bio genetics.html

### Gene sharing allows microbes to evolve very fast.



### Horizontal transfer produces mosaic organisms.



# An extreme case : our origins, due to a symbiosis between Bacteria and Archaea that produced a new kind of cells. Jordane Saget



### This dual origin contrasts with a classic evolutionary scenario.



To retrace the multiple origins of such entities requires an expanded formalism.





Halary et al. PNAS 2010

### Moreover, our human cells (eukaryotes) do not live alone.





### The impact of extant microbes on human biology is thus re-evaluated.







## Not only do our microbes interact together, but they also interact with our cells.



Scott F Gilbert

### Microbes have co-constructed our species- and they still do it.



## Homo sapiens is discovering Chosmo sapiens.





Chosmo sapiens

### The extent of this co-construction is under study.



Vascularization, bones, digestion, immunity, obesity, behavior...

# This conclusion holds for very many other species...

Functions of « symbiotic organs» are described in an increasingly large number of animals and plants...



Fronk &.Sachs, Trends in Ecology & Evolution, 2022

# Problem: a classic tree of the mere hosts lineages does not describe the processes responsible for co-constructed traits.





### To sum up, evolution has produced complex organisations

- Multi-agents
- Multi-lineages
  - Multi-level
    - Nested
- Interconnected



### An enhanced evolutionary biology seems warranted.

### Even the model of evolution by natural selection can be further generalized.





(Doolittle & Inkpen, PNAS 2018)

### Even the model of evolution by natural selection can be further generalized.



### • Variation:

not all entities to consider as evolving are identical.

### • Differential fitness:

different traits can confer survival or reproductive advantage.

• Inheritance:

Variation can be, in part, reproduced.

### Even the model of evolution by natural selection can be further generalized.

- There are variation in the population of interactions: not all entities to consider as evolving are identical.
  - Some interactions show differential fitness:

different patterns display survival or re-productive advantage.

• Inheritance:

Some interactions can be re-produced



Some interactions with such properties will have their frequency change; or their robustnesss/resilience change wrt others and therefore may be seen under that more general framework as units of selection.

- There are variation in the population of interactions: not all entities to consider as evolving are identical.
  - Some interactions show differential fitness:

different patterns display survival or re-productive advantage.

• Inheritance:

Some interactions can be re-produced



Interestingly, these units of selection **may not correspond to traditional lineages**: they can also form **functional units** that occur again and again or change/evolve.

- There are variation in the population of interactions: not all entities to consider as evolving are identical.
  - Some interactions show differential fitness:

different patterns display survival or reproductive advantage.

• Inheritance:

Some interactions can be re-produced



### The bottom line is that « partners mutate, interaction pattern change and dependencies/interdependencies can evolve».



### This situation typically occurs within host-associated microbiomes.



Interactions can get selected and evolve. This departs from a classic organismal-centered perspective on evolution.

# More generally, it can be used to investigate the evolution of processes sustaining Life.



Explaining the evolution of organisations, typically that of ecosystems, is a broader issue than infering relatedness between species.

Network comparisons could highlight interactions that may be under some form of selection\*



\* e.g., increase in strength and relative abundance in the system



# Network comparison could unravel interactions with critical structural roles, possibly as a result of selection.

One could check if some interactions within a system appears robust



### Network analyses could report architectures that may be the result of selection.

### One could check if if a system displays modules of robust\* interactions



\* e.g., tight clusters of robust edges



Network analyses could show whether and how the persistence – hence the fitness- of an ecosystem changes.

### One could check if if a system **robustness and its modularity\* increases**

Network at t

\* e.g., tight clusters of robust edges



# Network comparison could unravel interactions with critical structural roles, possibly as a result of selection.

One could check if some interactions within a system appears resilient\*



### Network analyses could report architectures that may be the result of selection.

### One could check if if a system increasingly displays **modules of resilient**\* interactions.



Network at t

\* e.g., tight clusters of resilient edges



If network analyses show whether and how the persistence – hence the fitness- of an ecosystem changes, then simple metrics may capture tipping points in the evolution of these ecosystems.



e.g. experiencing phase transition due to time or some human action....

### « It is the song, not the singers » (Doolittle & Inkpen, PNAS 2018)



Original song: ABCDEF Original singers: 1,2,3,4,5,6 **Re-produced song ABCDEF Different** singers: 1,2,3,4,7,6

Interaction patterns as new objects of study for evolutionary biology

### Modeling interaction networks opens up new research avenues for evolutionary biology.

Received: 9 April 2020 Revised: 18 September 2020 Accepted: 24 September 2020

DOI: 10.1002/bies.202000077

#### PROBLEMS & PARADIGMS

Prospects & Overviews

## BioEssays WILEY

# Modeling the evolution of interconnected processes: It is the song and the singers

Tracking units of selection with interaction networks

Eric Bapteste<sup>1</sup> | François Papale<sup>2</sup> (2)

### Conclusion

- Classic model do not focus interactions and on the evolution of interactions
- A more inclusive framework could be useful to better understand the stability of the living world while accounting for dependences/interdependences.
  - Enhanced evolutionary biology studies could contribute to this at multiple scales.



Evolutionary biology may also have something to say about the future history and diversity of life.

## So, we could adopt 2 different evolutionary perspectives : Trees focus on relatedness, networks on organization.



Microbes: too distants to really matter

Some microbes: very close and important

What **aspects of our biology are** co-constructed, or worse **manipulated by interspecific interactions**, that we should not ignore for our own good?



### Component of a network, our future shall look like our past.



Most plants and animals are likewise connected: our own species should act responsibly.



## Thanks a lot for your attention.



And thanks to all my wonderful colleagues: Phil Lopez, Ed Corel, François Papale, Jordane Saget, Philippe Huneman, Andrew Watson, Ford Doolittle, Frédéric Bouchard, Debashish Bhattacharya, J. Teulière, François-Joseph Lapointe, ...